TITLE CA1CaG.mod - generic HVA Ca
COMMENT
From Warman, Durand and Yuen J. Neurophys. 71:2033-2045, 1994
Based on Kay and Wong (1987) data.
As used by Lipowsky et al (1996) with fixed ECa
BPG 29-10-99
Scaling of inactivation time constant (tc) added
BPG 5-1-01
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
NEURON {
SUFFIX CA1CaG
USEION ca WRITE ica
RANGE gcabar,gca,ica
GLOBAL minf, hinf, mexp, hexp, tc
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
v (mV)
celsius = 36 (degC)
dt (ms)
gcabar = 0.01 (mho/cm2)
eca = 80 (mV)
tc = 1 (1)
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
minf hinf mexp hexp
}
BREAKPOINT {
SOLVE states
ica = gcabar*m*m*h*(v - eca)
}
UNITSOFF
INITIAL {
rates(v)
m = minf
h = hinf
}
PROCEDURE states() { :Computes state variables m, h
rates(v) : at the current v and dt.
m = m + mexp*(minf-m)
h = h + hexp*(hinf-h)
}
PROCEDURE rates(v) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
LOCAL alpha, beta, sum
TABLE minf, mexp, hinf, hexp DEPEND dt, tc FROM -100 TO 100 WITH 200
:"m" calcium activation system
alpha = -0.16 * vtrap(v+26,-4.5)
beta = 0.04 * vtrap(v+12,10)
sum = alpha + beta
minf = alpha/sum
mexp = 1 - exp(-dt*sum)
:"h" calcium inactivation system
alpha = 2 / exp((v+94)/10)
beta = 8 / (exp(-(v-68)/27) + 1)
sum = alpha + beta
hinf = alpha/sum
hexp = 1 - exp(-dt*sum/tc)
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y) - 1)
}
}
UNITSON