#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import figure_formating as ff
import matplotlib.image as im
lines = ['darkgrey','k','grey','lightgrey']
fname = 'IF_UI_Pre_randseed_5757538_high_res_IF_Vm_plasticity.txt'
titles = ['A. Morphology', 'B. Calcium diffusion', 'C. Electric properties']
f = ['neuron.png', 'diff.png']
if __name__ == '__main__':
fig = plt.figure(figsize=(3.3,8) )
ax = []
ax.append(fig.add_subplot(3,1,1))
ax.append(fig.add_subplot(3,1,2))
ax.append(fig.add_subplot(3,1,3))
for i,x in enumerate(ax[:-1]):
im0 = im.imread(f[i])
x.imshow(im0,aspect='auto')
x.axes.get_xaxis().set_visible(False)
x.axes.get_yaxis().set_visible(False)
x.set_frame_on(False)
f = open(fname)
header = f.readline().split()
data = None
i = -1
for line in f:
if line.startswith('/new'):
if data and i <3:
dane = np.array(data)
ax[2].plot(1000*dane[:,0], 1000*dane[:,1],lines[i],label = curr)
i +=1
data = []
elif line.startswith('/plot'):
curr = str(int(float(line.split(' ')[-2])*1000))+' pA'
print curr
else:
data.append([float(line.split()[0]),float(line.split()[1])])
ax[2].legend(frameon=False,loc=2)
ax[2].set_xlabel('Time (ms)')
ax[2].set_ylabel('$\mathrm{V_m}$ (mV)')
for i, x in enumerate(ax):
ff.add_title(x,titles[i])
ff.simpleaxis(x)
out_name = 'Fig_0'
plt.savefig(out_name+'.png',format='png', bbox_inches='tight',pad_inches=0.1,dpi=400)
plt.savefig(out_name+'.pdf',format='pdf', bbox_inches='tight',pad_inches=0.1,dpi=600)
plt.savefig(out_name+'.svg',format='svg', bbox_inches='tight',pad_inches=0.1,dpi=600)
plt.show()