# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************
# A collection of optimization algorithms. Version 0.3.1
# Minimization routines
"""optimize.py
A collection of general-purpose optimization routines using Numeric
fmin --- Nelder-Mead Simplex algorithm (uses only function calls)
fminBFGS --- Quasi-Newton method (uses function and gradient)
fminNCG --- Line-search Newton Conjugate Gradient (uses function, gradient
and hessian (if it's provided))
"""
import Numeric
import MLab
Num = Numeric
max = MLab.max
min = MLab.min
abs = Num.absolute
__version__="0.3.1"
def rosen(x): # The Rosenbrock function
return MLab.sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
def rosen_der(x):
xm = x[1:-1]
xm_m1 = x[:-2]
xm_p1 = x[2:]
der = MLab.zeros(x.shape,x.typecode())
der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
der[-1] = 200*(x[-1]-x[-2]**2)
return der
def rosen3_hess_p(x,p):
assert(len(x)==3)
assert(len(p)==3)
hessp = Num.zeros((3,),x.typecode())
hessp[0] = (2 + 800*x[0]**2 - 400*(-x[0]**2 + x[1])) * p[0] \
- 400*x[0]*p[1] \
+ 0
hessp[1] = - 400*x[0]*p[0] \
+ (202 + 800*x[1]**2 - 400*(-x[1]**2 + x[2]))*p[1] \
- 400*x[1] * p[2]
hessp[2] = 0 \
- 400*x[1] * p[1] \
+ 200 * p[2]
return hessp
def rosen3_hess(x):
assert(len(x)==3)
hessp = Num.zeros((3,3),x.typecode())
hessp[0,:] = [2 + 800*x[0]**2 -400*(-x[0]**2 + x[1]), -400*x[0], 0]
hessp[1,:] = [-400*x[0], 202+800*x[1]**2 -400*(-x[1]**2 + x[2]), -400*x[1]]
hessp[2,:] = [0,-400*x[1], 200]
return hessp
def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None, fulloutput=0, printmessg=1):
"""xopt,{fval,warnflag} = fmin(function, x0, args=(), xtol=1e-4, ftol=1e-4,
maxiter=200*len(x0), maxfun=200*len(x0), fulloutput=0, printmessg=0)
Uses a Nelder-Mead Simplex algorithm to find the minimum of function
of one or more variables.
"""
x0 = Num.asarray(x0)
assert (len(x0.shape)==1)
N = len(x0)
if maxiter is None:
maxiter = N * 200
if maxfun is None:
maxfun = N * 200
rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
one2np1 = range(1,N+1)
sim = Num.zeros((N+1,N),x0.typecode())
fsim = Num.zeros((N+1,),'d')
sim[0] = x0
fsim[0] = apply(func,(x0,)+args)
nonzdelt = 0.05
zdelt = 0.00025
for k in range(0,N):
y = Num.array(x0,copy=1)
if y[k] != 0:
y[k] = (1+nonzdelt)*y[k]
else:
y[k] = zdelt
sim[k+1] = y
f = apply(func,(y,)+args)
fsim[k+1] = f
ind = Num.argsort(fsim)
fsim = Num.take(fsim,ind) # sort so sim[0,:] has the lowest function value
sim = Num.take(sim,ind,0)
iterations = 1
funcalls = N+1
while (funcalls < maxfun and iterations < maxiter):
if (max(Num.ravel(abs(sim[1:]-sim[0]))) <= xtol \
and max(abs(fsim[0]-fsim[1:])) <= ftol):
break
xbar = Num.add.reduce(sim[:-1],0) / N
xr = (1+rho)*xbar - rho*sim[-1]
fxr = apply(func,(xr,)+args)
funcalls = funcalls + 1
doshrink = 0
if fxr < fsim[0]:
xe = (1+rho*chi)*xbar - rho*chi*sim[-1]
fxe = apply(func,(xe,)+args)
funcalls = funcalls + 1
if fxe < fxr:
sim[-1] = xe
fsim[-1] = fxe
else:
sim[-1] = xr
fsim[-1] = fxr
else: # fsim[0] <= fxr
if fxr < fsim[-2]:
sim[-1] = xr
fsim[-1] = fxr
else: # fxr >= fsim[-2]
# Perform contraction
if fxr < fsim[-1]:
xc = (1+psi*rho)*xbar - psi*rho*sim[-1]
fxc = apply(func,(xc,)+args)
funcalls = funcalls + 1
if fxc <= fxr:
sim[-1] = xc
fsim[-1] = fxc
else:
doshrink=1
else:
# Perform an inside contraction
xcc = (1-psi)*xbar + psi*sim[-1]
fxcc = apply(func,(xcc,)+args)
funcalls = funcalls + 1
if fxcc < fsim[-1]:
sim[-1] = xcc
fsim[-1] = fxcc
else:
doshrink = 1
if doshrink:
for j in one2np1:
sim[j] = sim[0] + sigma*(sim[j] - sim[0])
fsim[j] = apply(func,(sim[j],)+args)
funcalls = funcalls + N
ind = Num.argsort(fsim)
sim = Num.take(sim,ind,0)
fsim = Num.take(fsim,ind)
iterations = iterations + 1
x = sim[0]
fval = min(fsim)
warnflag = 0
if funcalls >= maxfun:
warnflag = 1
if printmessg:
print "Warning: Maximum number of function evaluations has been exceeded."
elif iterations >= maxiter:
warnflag = 2
if printmessg:
print "Warning: Maximum number of iterations has been exceeded"
else:
if printmessg:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % iterations
print " Function evaluations: %d" % funcalls
if fulloutput:
return x, fval, warnflag
else:
return x
def zoom(a_lo, a_hi):
pass
def line_search(f, fprime, xk, pk, gfk, args=(), c1=1e-4, c2=0.9, amax=50):
"""alpha, fc, gc = line_search(f, xk, pk, gfk,
args=(), c1=1e-4, c2=0.9, amax=1)
minimize the function f(xk+alpha pk) using the line search algorithm of
Wright and Nocedal in 'Numerical Optimization', 1999, pg. 59-60
"""
fc = 0
gc = 0
alpha0 = 1.0
phi0 = apply(f,(xk,)+args)
phi_a0 = apply(f,(xk+alpha0*pk,)+args)
fc = fc + 2
derphi0 = Num.dot(gfk,pk)
derphi_a0 = Num.dot(apply(fprime,(xk+alpha0*pk,)+args),pk)
gc = gc + 1
# check to see if alpha0 = 1 satisfies Strong Wolfe conditions.
if (phi_a0 <= phi0 + c1*alpha0*derphi0) \
and (abs(derphi_a0) <= c2*abs(derphi0)):
return alpha0, fc, gc
alpha0 = 0
alpha1 = 1
phi_a1 = phi_a0
phi_a0 = phi0
i = 1
while 1:
if (phi_a1 > phi0 + c1*alpha1*derphi0) or \
((phi_a1 >= phi_a0) and (i > 1)):
return zoom(alpha0, alpha1)
derphi_a1 = Num.dot(apply(fprime,(xk+alpha1*pk,)+args),pk)
gc = gc + 1
if (abs(derphi_a1) <= -c2*derphi0):
return alpha1
if (derphi_a1 >= 0):
return zoom(alpha1, alpha0)
alpha2 = (amax-alpha1)*0.25 + alpha1
i = i + 1
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = apply(f,(xk+alpha1*pk,)+args)
def line_search_BFGS(f, xk, pk, gfk, args=(), c1=1e-4, alpha0=1):
"""alpha, fc, gc = line_search(f, xk, pk, gfk,
args=(), c1=1e-4, alpha0=1)
minimize over alpha, the function f(xk+alpha pk) using the interpolation
algorithm (Armiijo backtracking) as suggested by
Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57
"""
fc = 0
phi0 = apply(f,(xk,)+args) # compute f(xk)
phi_a0 = apply(f,(xk+alpha0*pk,)+args) # compute f
fc = fc + 2
derphi0 = Num.dot(gfk,pk)
if (phi_a0 <= phi0 + c1*alpha0*derphi0):
return alpha0, fc, 0
# Otherwise compute the minimizer of a quadratic interpolant:
alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0)
phi_a1 = apply(f,(xk+alpha1*pk,)+args)
fc = fc + 1
if (phi_a1 <= phi0 + c1*alpha1*derphi0):
return alpha1, fc, 0
# Otherwise loop with cubic interpolation until we find an alpha which satifies
# the first Wolfe condition (since we are backtracking, we will assume that
# the value of alpha is not too small and satisfies the second condition.
while 1: # we are assuming pk is a descent direction
factor = alpha0**2 * alpha1**2 * (alpha1-alpha0)
a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \
alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0)
a = a / factor
b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \
alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0)
b = b / factor
alpha2 = (-b + Num.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a)
phi_a2 = apply(f,(xk+alpha2*pk,)+args)
fc = fc + 1
if (phi_a2 <= phi0 + c1*alpha2*derphi0):
return alpha2, fc, 0
if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96:
alpha2 = alpha1 / 2.0
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = phi_a2
epsilon = 1e-8
def approx_fprime(xk,f,*args):
f0 = apply(f,(xk,)+args)
grad = Num.zeros((len(xk),),'d')
ei = Num.zeros((len(xk),),'d')
for k in range(len(xk)):
ei[k] = 1.0
grad[k] = (apply(f,(xk+epsilon*ei,)+args) - f0)/epsilon
ei[k] = 0.0
return grad
def approx_fhess_p(x0,p,fprime,*args):
f2 = apply(fprime,(x0+epsilon*p,)+args)
f1 = apply(fprime,(x0,)+args)
return (f2 - f1)/epsilon
def fminBFGS(f, x0, fprime=None, args=(), avegtol=1e-5, maxiter=None, fulloutput=0, printmessg=1):
"""xopt = fminBFGS(f, x0, fprime=None, args=(), avegtol=1e-5,
maxiter=None, fulloutput=0, printmessg=1)
Optimize the function, f, whose gradient is given by fprime using the
quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
See Wright, and Nocedal 'Numerical Optimization', 1999, pg. 198.
"""
app_fprime = 0
if fprime is None:
app_fprime = 1
x0 = Num.asarray(x0)
if maxiter is None:
maxiter = len(x0)*200
func_calls = 0
grad_calls = 0
k = 0
N = len(x0)
gtol = N*avegtol
I = MLab.eye(N)
Hk = I
if app_fprime:
gfk = apply(approx_fprime,(x0,f)+args)
func_calls = func_calls + len(x0) + 1
else:
gfk = apply(fprime,(x0,)+args)
grad_calls = grad_calls + 1
xk = x0
sk = [2*gtol]
while (Num.add.reduce(abs(gfk)) > gtol) and (k < maxiter):
pk = -Num.dot(Hk,gfk)
alpha_k, fc, gc = line_search_BFGS(f,xk,pk,gfk,args)
func_calls = func_calls + fc
xkp1 = xk + alpha_k * pk
sk = xkp1 - xk
xk = xkp1
if app_fprime:
gfkp1 = apply(approx_fprime,(xkp1,f)+args)
func_calls = func_calls + gc + len(x0) + 1
else:
gfkp1 = apply(fprime,(xkp1,)+args)
grad_calls = grad_calls + gc + 1
yk = gfkp1 - gfk
k = k + 1
rhok = 1 / Num.dot(yk,sk)
A1 = I - sk[:,Num.NewAxis] * yk[Num.NewAxis,:] * rhok
A2 = I - yk[:,Num.NewAxis] * sk[Num.NewAxis,:] * rhok
Hk = Num.dot(A1,Num.dot(Hk,A2)) + rhok * sk[:,Num.NewAxis] * sk[Num.NewAxis,:]
gfk = gfkp1
if printmessg or fulloutput:
fval = apply(f,(xk,)+args)
if k >= maxiter:
warnflag = 1
if printmessg:
print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls
print " Gradient evaluations: %d" % grad_calls
else:
warnflag = 0
if printmessg:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % func_calls
print " Gradient evaluations: %d" % grad_calls
if fulloutput:
return xk, fval, func_calls, grad_calls, warnflag
else:
return xk
def fminNCG(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5, maxiter=None, fulloutput=0, printmessg=1):
"""xopt = fminNCG(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5,
maxiter=None, fulloutput=0, printmessg=1)
Optimize the function, f, whose gradient is given by fprime using the
Newton-CG method. fhess_p must compute the hessian times an arbitrary
vector. If it is not given, finite-differences on fprime are used to
compute it. See Wright, and Nocedal 'Numerical Optimization', 1999,
pg. 140.
"""
x0 = Num.asarray(x0)
fcalls = 0
gcalls = 0
hcalls = 0
approx_hessp = 0
if fhess_p is None and fhess is None: # Define hessian product
approx_hessp = 1
xtol = len(x0)*avextol
update = [2*xtol]
xk = x0
k = 0
while (Num.add.reduce(abs(update)) > xtol) and (k < maxiter):
# Compute a search direction pk by applying the CG method to
# del2 f(xk) p = - grad f(xk) starting from 0.
b = -apply(fprime,(xk,)+args)
gcalls = gcalls + 1
maggrad = Num.add.reduce(abs(b))
eta = min([0.5,Num.sqrt(maggrad)])
termcond = eta * maggrad
xsupi = 0
ri = -b
psupi = -ri
i = 0
dri0 = Num.dot(ri,ri)
if fhess is not None: # you want to compute hessian once.
A = apply(fhess,(xk,)+args)
hcalls = hcalls + 1
while Num.add.reduce(abs(ri)) > termcond:
if fhess is None:
if approx_hessp:
Ap = apply(approx_fhess_p,(xk,psupi,fprime)+args)
gcalls = gcalls + 2
else:
Ap = apply(fhess_p,(xk,psupi)+args)
hcalls = hcalls + 1
else:
Ap = Num.dot(A,psupi)
# check curvature
curv = Num.dot(psupi,Ap)
if (curv <= 0):
if (i > 0):
break
else:
xsupi = xsupi + dri0/curv * psupi
break
alphai = dri0 / curv
xsupi = xsupi + alphai * psupi
ri = ri + alphai * Ap
dri1 = Num.dot(ri,ri)
betai = dri1 / dri0
psupi = -ri + betai * psupi
i = i + 1
dri0 = dri1 # update Num.dot(ri,ri) for next time.
pk = xsupi # search direction is solution to system.
gfk = -b # gradient at xk
alphak, fc, gc = line_search_BFGS(f,xk,pk,gfk,args)
fcalls = fcalls + fc
gcalls = gcalls + gc
update = alphak * pk
xk = xk + update
k = k + 1
if printmessg or fulloutput:
fval = apply(f,(xk,)+args)
if k >= maxiter:
warnflag = 1
if printmessg:
print "Warning: Maximum number of iterations has been exceeded"
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % fcalls
print " Gradient evaluations: %d" % gcalls
print " Hessian evaluations: %d" % hcalls
else:
warnflag = 0
if printmessg:
print "Optimization terminated successfully."
print " Current function value: %f" % fval
print " Iterations: %d" % k
print " Function evaluations: %d" % fcalls
print " Gradient evaluations: %d" % gcalls
print " Hessian evaluations: %d" % hcalls
if fulloutput:
return xk, fval, fcalls, gcalls, hcalls, warnflag
else:
return xk
if __name__ == "__main__":
import string
import time
times = []
algor = []
x0 = [0.8,1.2,0.7]
start = time.time()
x = fmin(rosen,x0)
print x
times.append(time.time() - start)
algor.append('Nelder-Mead Simplex\t')
start = time.time()
x = fminBFGS(rosen, x0, fprime=rosen_der, maxiter=80)
print x
times.append(time.time() - start)
algor.append('BFGS Quasi-Newton\t')
start = time.time()
x = fminBFGS(rosen, x0, avegtol=1e-4, maxiter=100)
print x
times.append(time.time() - start)
algor.append('BFGS without gradient\t')
start = time.time()
x = fminNCG(rosen, x0, rosen_der, fhess_p=rosen3_hess_p, maxiter=80)
print x
times.append(time.time() - start)
algor.append('Newton-CG with hessian product')
start = time.time()
x = fminNCG(rosen, x0, rosen_der, fhess=rosen3_hess, maxiter=80)
print x
times.append(time.time() - start)
algor.append('Newton-CG with full hessian')
print "\nMinimizing the Rosenbrock function of order 3\n"
print " Algorithm \t\t\t Seconds"
print "===========\t\t\t ========="
for k in range(len(algor)):
print algor[k], "\t -- ", times[k]