*DECK DCFODE SUBROUTINE DCFODE (METH, ELCO, TESCO) C***BEGIN PROLOGUE DCFODE C***SUBSIDIARY C***PURPOSE Set ODE integrator coefficients. C***TYPE DOUBLE PRECISION (SCFODE-S, DCFODE-D) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C C DCFODE is called by the integrator routine to set coefficients C needed there. The coefficients for the current method, as C given by the value of METH, are set for all orders and saved. C The maximum order assumed here is 12 if METH = 1 and 5 if METH = 2. C (A smaller value of the maximum order is also allowed.) C DCFODE is called once at the beginning of the problem, C and is not called again unless and until METH is changed. C C The ELCO array contains the basic method coefficients. C The coefficients el(i), 1 .le. i .le. nq+1, for the method of C order nq are stored in ELCO(i,nq). They are given by a genetrating C polynomial, i.e., C l(x) = el(1) + el(2)*x + ... + el(nq+1)*x**nq. C For the implicit Adams methods, l(x) is given by C dl/dx = (x+1)*(x+2)*...*(x+nq-1)/factorial(nq-1), l(-1) = 0. C For the BDF methods, l(x) is given by C l(x) = (x+1)*(x+2)* ... *(x+nq)/K, C where K = factorial(nq)*(1 + 1/2 + ... + 1/nq). C C The TESCO array contains test constants used for the C local error test and the selection of step size and/or order. C At order nq, TESCO(k,nq) is used for the selection of step C size at order nq - 1 if k = 1, at order nq if k = 2, and at order C nq + 1 if k = 3. C C***SEE ALSO DLSODE C***ROUTINES CALLED (NONE) C***REVISION HISTORY (YYMMDD) C 791129 DATE WRITTEN C 890501 Modified prologue to SLATEC/LDOC format. (FNF) C 890503 Minor cosmetic changes. (FNF) C 930809 Renamed to allow single/double precision versions. (ACH) C***END PROLOGUE DCFODE C**End INTEGER METH INTEGER I, IB, NQ, NQM1, NQP1 DOUBLE PRECISION ELCO, TESCO DOUBLE PRECISION AGAMQ, FNQ, FNQM1, PC, PINT, RAGQ, 1 RQFAC, RQ1FAC, TSIGN, XPIN DIMENSION ELCO(13,12), TESCO(3,12) DIMENSION PC(12) C C***FIRST EXECUTABLE STATEMENT DCFODE GO TO (100, 200), METH C 100 ELCO(1,1) = 1.0D0 ELCO(2,1) = 1.0D0 TESCO(1,1) = 0.0D0 TESCO(2,1) = 2.0D0 TESCO(1,2) = 1.0D0 TESCO(3,12) = 0.0D0 PC(1) = 1.0D0 RQFAC = 1.0D0 DO 140 NQ = 2,12 C----------------------------------------------------------------------- C The PC array will contain the coefficients of the polynomial C p(x) = (x+1)*(x+2)*...*(x+nq-1). C Initially, p(x) = 1. C----------------------------------------------------------------------- RQ1FAC = RQFAC RQFAC = RQFAC/NQ NQM1 = NQ - 1 FNQM1 = NQM1 NQP1 = NQ + 1 C Form coefficients of p(x)*(x+nq-1). ---------------------------------- PC(NQ) = 0.0D0 DO 110 IB = 1,NQM1 I = NQP1 - IB 110 PC(I) = PC(I-1) + FNQM1*PC(I) PC(1) = FNQM1*PC(1) C Compute integral, -1 to 0, of p(x) and x*p(x). ----------------------- PINT = PC(1) XPIN = PC(1)/2.0D0 TSIGN = 1.0D0 DO 120 I = 2,NQ TSIGN = -TSIGN PINT = PINT + TSIGN*PC(I)/I 120 XPIN = XPIN + TSIGN*PC(I)/(I+1) C Store coefficients in ELCO and TESCO. -------------------------------- ELCO(1,NQ) = PINT*RQ1FAC ELCO(2,NQ) = 1.0D0 DO 130 I = 2,NQ 130 ELCO(I+1,NQ) = RQ1FAC*PC(I)/I AGAMQ = RQFAC*XPIN RAGQ = 1.0D0/AGAMQ TESCO(2,NQ) = RAGQ IF (NQ .LT. 12) TESCO(1,NQP1) = RAGQ*RQFAC/NQP1 TESCO(3,NQM1) = RAGQ 140 CONTINUE RETURN C 200 PC(1) = 1.0D0 RQ1FAC = 1.0D0 DO 230 NQ = 1,5 C----------------------------------------------------------------------- C The PC array will contain the coefficients of the polynomial C p(x) = (x+1)*(x+2)*...*(x+nq). C Initially, p(x) = 1. C----------------------------------------------------------------------- FNQ = NQ NQP1 = NQ + 1 C Form coefficients of p(x)*(x+nq). ------------------------------------ PC(NQP1) = 0.0D0 DO 210 IB = 1,NQ I = NQ + 2 - IB 210 PC(I) = PC(I-1) + FNQ*PC(I) PC(1) = FNQ*PC(1) C Store coefficients in ELCO and TESCO. -------------------------------- DO 220 I = 1,NQP1 220 ELCO(I,NQ) = PC(I)/PC(2) ELCO(2,NQ) = 1.0D0 TESCO(1,NQ) = RQ1FAC TESCO(2,NQ) = NQP1/ELCO(1,NQ) TESCO(3,NQ) = (NQ+2)/ELCO(1,NQ) RQ1FAC = RQ1FAC/FNQ 230 CONTINUE RETURN C----------------------- END OF SUBROUTINE DCFODE ---------------------- END