*DECK DGBSL
      SUBROUTINE DGBSL (ABD, LDA, N, ML, MU, IPVT, B, JOB)
C***BEGIN PROLOGUE  DGBSL
C***PURPOSE  Solve the real band system A*X=B or TRANS(A)*X=B using
C            the factors computed by DGBCO or DGBFA.
C***CATEGORY  D2A2
C***TYPE      DOUBLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C)
C***KEYWORDS  BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
C***AUTHOR  Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C     DGBSL solves the double precision band system
C     A * X = B  or  TRANS(A) * X = B
C     using the factors computed by DGBCO or DGBFA.
C
C     On Entry
C
C        ABD     DOUBLE PRECISION(LDA, N)
C                the output from DGBCO or DGBFA.
C
C        LDA     INTEGER
C                the leading dimension of the array  ABD .
C
C        N       INTEGER
C                the order of the original matrix.
C
C        ML      INTEGER
C                number of diagonals below the main diagonal.
C
C        MU      INTEGER
C                number of diagonals above the main diagonal.
C
C        IPVT    INTEGER(N)
C                the pivot vector from DGBCO or DGBFA.
C
C        B       DOUBLE PRECISION(N)
C                the right hand side vector.
C
C        JOB     INTEGER
C                = 0         to solve  A*X = B ,
C                = nonzero   to solve  TRANS(A)*X = B , where
C                            TRANS(A)  is the transpose.
C
C     On Return
C
C        B       the solution vector  X .
C
C     Error Condition
C
C        A division by zero will occur if the input factor contains a
C        zero on the diagonal.  Technically this indicates singularity
C        but it is often caused by improper arguments or improper
C        setting of LDA .  It will not occur if the subroutines are
C        called correctly and if DGBCO has set RCOND .GT. 0.0
C        or DGBFA has set INFO .EQ. 0 .
C
C     To compute  INVERSE(A) * C  where  C  is a matrix
C     with  P  columns
C           CALL DGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z)
C           IF (RCOND is too small) GO TO ...
C           DO 10 J = 1, P
C              CALL DGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0)
C        10 CONTINUE
C
C***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C                 Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED  DAXPY, DDOT
C***REVISION HISTORY  (YYMMDD)
C   780814  DATE WRITTEN
C   890531  Changed all specific intrinsics to generic.  (WRB)
C   890831  Modified array declarations.  (WRB)
C   890831  REVISION DATE from Version 3.2
C   891214  Prologue converted to Version 4.0 format.  (BAB)
C   900326  Removed duplicate information from DESCRIPTION section.
C           (WRB)
C   920501  Reformatted the REFERENCES section.  (WRB)
C***END PROLOGUE  DGBSL
      INTEGER LDA,N,ML,MU,IPVT(*),JOB
      DOUBLE PRECISION ABD(LDA,*),B(*)
C
      DOUBLE PRECISION DDOT,T
      INTEGER K,KB,L,LA,LB,LM,M,NM1
C***FIRST EXECUTABLE STATEMENT  DGBSL
      M = MU + ML + 1
      NM1 = N - 1
      IF (JOB .NE. 0) GO TO 50
C
C        JOB = 0 , SOLVE  A * X = B
C        FIRST SOLVE L*Y = B
C
         IF (ML .EQ. 0) GO TO 30
         IF (NM1 .LT. 1) GO TO 30
            DO 20 K = 1, NM1
               LM = MIN(ML,N-K)
               L = IPVT(K)
               T = B(L)
               IF (L .EQ. K) GO TO 10
                  B(L) = B(K)
                  B(K) = T
   10          CONTINUE
               CALL DAXPY(LM,T,ABD(M+1,K),1,B(K+1),1)
   20       CONTINUE
   30    CONTINUE
C
C        NOW SOLVE  U*X = Y
C
         DO 40 KB = 1, N
            K = N + 1 - KB
            B(K) = B(K)/ABD(M,K)
            LM = MIN(K,M) - 1
            LA = M - LM
            LB = K - LM
            T = -B(K)
            CALL DAXPY(LM,T,ABD(LA,K),1,B(LB),1)
   40    CONTINUE
      GO TO 100
   50 CONTINUE
C
C        JOB = NONZERO, SOLVE  TRANS(A) * X = B
C        FIRST SOLVE  TRANS(U)*Y = B
C
         DO 60 K = 1, N
            LM = MIN(K,M) - 1
            LA = M - LM
            LB = K - LM
            T = DDOT(LM,ABD(LA,K),1,B(LB),1)
            B(K) = (B(K) - T)/ABD(M,K)
   60    CONTINUE
C
C        NOW SOLVE TRANS(L)*X = Y
C
         IF (ML .EQ. 0) GO TO 90
         IF (NM1 .LT. 1) GO TO 90
            DO 80 KB = 1, NM1
               K = N - KB
               LM = MIN(ML,N-K)
               B(K) = B(K) + DDOT(LM,ABD(M+1,K),1,B(K+1),1)
               L = IPVT(K)
               IF (L .EQ. K) GO TO 70
                  T = B(L)
                  B(L) = B(K)
                  B(K) = T
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
  100 CONTINUE
      RETURN
      END