*DECK DHELS SUBROUTINE DHELS (A, LDA, N, Q, B) INTEGER LDA, N DOUBLE PRECISION A(LDA,*), B(*), Q(*) C----------------------------------------------------------------------- C This is part of the LINPACK routine DGESL with changes C due to the fact that A is an upper Hessenberg matrix. C----------------------------------------------------------------------- C DHELS solves the least squares problem C C min (b-A*x, b-A*x) C C using the factors computed by DHEQR. C C On entry C C A DOUBLE PRECISION(LDA, N) C the output from DHEQR which contains the upper C triangular factor R in the QR decomposition of A. C C LDA INTEGER C the leading dimension of the array A . C C N INTEGER C A is originally an (N+1) by N matrix. C C Q DOUBLE PRECISION(2*N) C The coefficients of the N givens rotations C used in the QR factorization of A. C C B DOUBLE PRECISION(N+1) C the right hand side vector. C C On return C C B the solution vector x . C C Modification of LINPACK, by Peter Brown, LLNL. C Written 1/13/86. This version dated 6/20/01. C C BLAS called: DAXPY C----------------------------------------------------------------------- INTEGER IQ, K, KB, KP1 DOUBLE PRECISION C, S, T, T1, T2 C C Minimize (b-A*x, b-A*x) C First form Q*b. C DO 20 K = 1, N KP1 = K + 1 IQ = 2*(K-1) + 1 C = Q(IQ) S = Q(IQ+1) T1 = B(K) T2 = B(KP1) B(K) = C*T1 - S*T2 B(KP1) = S*T1 + C*T2 20 CONTINUE C C Now solve R*x = Q*b. C DO 40 KB = 1, N K = N + 1 - KB B(K) = B(K)/A(K,K) T = -B(K) CALL DAXPY (K-1, T, A(1,K), 1, B(1), 1) 40 CONTINUE RETURN C----------------------- End of Subroutine DHELS ----------------------- END