*DECK DPRJA
      SUBROUTINE DPRJA (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM,
     1   F, JAC)
      EXTERNAL F, JAC
      INTEGER NEQ, NYH, IWM
      DOUBLE PRECISION Y, YH, EWT, FTEM, SAVF, WM
      DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*),
     1   WM(*), IWM(*)
      INTEGER IOWND, IOWNS,
     1   ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L,
     2   LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER,
     3   MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
      INTEGER IOWND2, IOWNS2, JTYP, MUSED, MXORDN, MXORDS
      DOUBLE PRECISION ROWNS,
     1   CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND
      DOUBLE PRECISION ROWND2, ROWNS2, PDNORM
      COMMON /DLS001/ ROWNS(209),
     1   CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND,
     2   IOWND(6), IOWNS(6),
     3   ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L,
     4   LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER,
     5   MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
      COMMON /DLSA01/ ROWND2, ROWNS2(20), PDNORM,
     1   IOWND2(3), IOWNS2(2), JTYP, MUSED, MXORDN, MXORDS
      INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP,
     1   MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1
      DOUBLE PRECISION CON, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ,
     1   DMNORM, DFNORM, DBNORM
C-----------------------------------------------------------------------
C DPRJA is called by DSTODA to compute and process the matrix
C P = I - H*EL(1)*J , where J is an approximation to the Jacobian.
C Here J is computed by the user-supplied routine JAC if
C MITER = 1 or 4 or by finite differencing if MITER = 2 or 5.
C J, scaled by -H*EL(1), is stored in WM.  Then the norm of J (the
C matrix norm consistent with the weighted max-norm on vectors given
C by DMNORM) is computed, and J is overwritten by P.  P is then
C subjected to LU decomposition in preparation for later solution
C of linear systems with P as coefficient matrix.  This is done
C by DGEFA if MITER = 1 or 2, and by DGBFA if MITER = 4 or 5.
C
C In addition to variables described previously, communication
C with DPRJA uses the following:
C Y     = array containing predicted values on entry.
C FTEM  = work array of length N (ACOR in DSTODA).
C SAVF  = array containing f evaluated at predicted y.
C WM    = real work space for matrices.  On output it contains the
C         LU decomposition of P.
C         Storage of matrix elements starts at WM(3).
C         WM also contains the following matrix-related data:
C         WM(1) = SQRT(UROUND), used in numerical Jacobian increments.
C IWM   = integer work space containing pivot information, starting at
C         IWM(21).   IWM also contains the band parameters
C         ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5.
C EL0   = EL(1) (input).
C PDNORM= norm of Jacobian matrix. (Output).
C IERPJ = output error flag,  = 0 if no trouble, .gt. 0 if
C         P matrix found to be singular.
C JCUR  = output flag = 1 to indicate that the Jacobian matrix
C         (or approximation) is now current.
C This routine also uses the Common variables EL0, H, TN, UROUND,
C MITER, N, NFE, and NJE.
C-----------------------------------------------------------------------
      NJE = NJE + 1
      IERPJ = 0
      JCUR = 1
      HL0 = H*EL0
      GO TO (100, 200, 300, 400, 500), MITER
C If MITER = 1, call JAC and multiply by scalar. -----------------------
 100  LENP = N*N
      DO 110 I = 1,LENP
 110    WM(I+2) = 0.0D0
      CALL JAC (NEQ, TN, Y, 0, 0, WM(3), N)
      CON = -HL0
      DO 120 I = 1,LENP
 120    WM(I+2) = WM(I+2)*CON
      GO TO 240
C If MITER = 2, make N calls to F to approximate J. --------------------
 200  FAC = DMNORM (N, SAVF, EWT)
      R0 = 1000.0D0*ABS(H)*UROUND*N*FAC
      IF (R0 .EQ. 0.0D0) R0 = 1.0D0
      SRUR = WM(1)
      J1 = 2
      DO 230 J = 1,N
        YJ = Y(J)
        R = MAX(SRUR*ABS(YJ),R0/EWT(J))
        Y(J) = Y(J) + R
        FAC = -HL0/R
        CALL F (NEQ, TN, Y, FTEM)
        DO 220 I = 1,N
 220      WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
        Y(J) = YJ
        J1 = J1 + N
 230    CONTINUE
      NFE = NFE + N
 240  CONTINUE
C Compute norm of Jacobian. --------------------------------------------
      PDNORM = DFNORM (N, WM(3), EWT)/ABS(HL0)
C Add identity matrix. -------------------------------------------------
      J = 3
      NP1 = N + 1
      DO 250 I = 1,N
        WM(J) = WM(J) + 1.0D0
 250    J = J + NP1
C Do LU decomposition on P. --------------------------------------------
      CALL DGEFA (WM(3), N, N, IWM(21), IER)
      IF (IER .NE. 0) IERPJ = 1
      RETURN
C Dummy block only, since MITER is never 3 in this routine. ------------
 300  RETURN
C If MITER = 4, call JAC and multiply by scalar. -----------------------
 400  ML = IWM(1)
      MU = IWM(2)
      ML3 = ML + 3
      MBAND = ML + MU + 1
      MEBAND = MBAND + ML
      LENP = MEBAND*N
      DO 410 I = 1,LENP
 410    WM(I+2) = 0.0D0
      CALL JAC (NEQ, TN, Y, ML, MU, WM(ML3), MEBAND)
      CON = -HL0
      DO 420 I = 1,LENP
 420    WM(I+2) = WM(I+2)*CON
      GO TO 570
C If MITER = 5, make MBAND calls to F to approximate J. ----------------
 500  ML = IWM(1)
      MU = IWM(2)
      MBAND = ML + MU + 1
      MBA = MIN(MBAND,N)
      MEBAND = MBAND + ML
      MEB1 = MEBAND - 1
      SRUR = WM(1)
      FAC = DMNORM (N, SAVF, EWT)
      R0 = 1000.0D0*ABS(H)*UROUND*N*FAC
      IF (R0 .EQ. 0.0D0) R0 = 1.0D0
      DO 560 J = 1,MBA
        DO 530 I = J,N,MBAND
          YI = Y(I)
          R = MAX(SRUR*ABS(YI),R0/EWT(I))
 530      Y(I) = Y(I) + R
        CALL F (NEQ, TN, Y, FTEM)
        DO 550 JJ = J,N,MBAND
          Y(JJ) = YH(JJ,1)
          YJJ = Y(JJ)
          R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ))
          FAC = -HL0/R
          I1 = MAX(JJ-MU,1)
          I2 = MIN(JJ+ML,N)
          II = JJ*MEB1 - ML + 2
          DO 540 I = I1,I2
 540        WM(II+I) = (FTEM(I) - SAVF(I))*FAC
 550      CONTINUE
 560    CONTINUE
      NFE = NFE + MBA
 570  CONTINUE
C Compute norm of Jacobian. --------------------------------------------
      PDNORM = DBNORM (N, WM(ML+3), MEBAND, ML, MU, EWT)/ABS(HL0)
C Add identity matrix. -------------------------------------------------
      II = MBAND + 2
      DO 580 I = 1,N
        WM(II) = WM(II) + 1.0D0
 580    II = II + MEBAND
C Do LU decomposition of P. --------------------------------------------
      CALL DGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER)
      IF (IER .NE. 0) IERPJ = 1
      RETURN
C----------------------- End of Subroutine DPRJA -----------------------
      END