*DECK DSPIGMR SUBROUTINE DSPIGMR (NEQ, TN, Y, SAVF, B, WGHT, N, MAXL, MAXLP1, 1 KMP, DELTA, HL0, JPRE, MNEWT, F, PSOL, NPSL, X, V, HES, Q, 2 LGMR, WP, IWP, WK, DL, IFLAG) EXTERNAL F, PSOL INTEGER NEQ,N,MAXL,MAXLP1,KMP,JPRE,MNEWT,NPSL,LGMR,IWP,IFLAG DOUBLE PRECISION TN,Y,SAVF,B,WGHT,DELTA,HL0,X,V,HES,Q,WP,WK,DL DIMENSION NEQ(*), Y(*), SAVF(*), B(*), WGHT(*), X(*), V(N,*), 1 HES(MAXLP1,*), Q(*), WP(*), IWP(*), WK(*), DL(*) C----------------------------------------------------------------------- C This routine solves the linear system A * x = b using a scaled C preconditioned version of the Generalized Minimal Residual method. C An initial guess of x = 0 is assumed. C----------------------------------------------------------------------- C C On entry C C NEQ = problem size, passed to F and PSOL (NEQ(1) = N). C C TN = current value of t. C C Y = array containing current dependent variable vector. C C SAVF = array containing current value of f(t,y). C C B = the right hand side of the system A*x = b. C B is also used as work space when computing C the final approximation. C (B is the same as V(*,MAXL+1) in the call to DSPIGMR.) C C WGHT = the vector of length N containing the nonzero C elements of the diagonal scaling matrix. C C N = the order of the matrix A, and the lengths C of the vectors WGHT, B and X. C C MAXL = the maximum allowable order of the matrix HES. C C MAXLP1 = MAXL + 1, used for dynamic dimensioning of HES. C C KMP = the number of previous vectors the new vector VNEW C must be made orthogonal to. KMP .le. MAXL. C C DELTA = tolerance on residuals b - A*x in weighted RMS-norm. C C HL0 = current value of (step size h) * (coefficient l0). C C JPRE = preconditioner type flag. C C MNEWT = Newton iteration counter (.ge. 0). C C WK = real work array used by routine DATV and PSOL. C C DL = real work array used for calculation of the residual C norm RHO when the method is incomplete (KMP .lt. MAXL). C Not needed or referenced in complete case (KMP = MAXL). C C WP = real work array used by preconditioner PSOL. C C IWP = integer work array used by preconditioner PSOL. C C On return C C X = the final computed approximation to the solution C of the system A*x = b. C C LGMR = the number of iterations performed and C the current order of the upper Hessenberg C matrix HES. C C NPSL = the number of calls to PSOL. C C V = the N by (LGMR+1) array containing the LGMR C orthogonal vectors V(*,1) to V(*,LGMR). C C HES = the upper triangular factor of the QR decomposition C of the (LGMR+1) by lgmr upper Hessenberg matrix whose C entries are the scaled inner-products of A*V(*,i) C and V(*,k). C C Q = real array of length 2*MAXL containing the components C of the Givens rotations used in the QR decomposition C of HES. It is loaded in DHEQR and used in DHELS. C C IFLAG = integer error flag: C 0 means convergence in LGMR iterations, LGMR .le. MAXL. C 1 means the convergence test did not pass in MAXL C iterations, but the residual norm is .lt. 1, C or .lt. norm(b) if MNEWT = 0, and so x is computed. C 2 means the convergence test did not pass in MAXL C iterations, residual .gt. 1, and X is undefined. C 3 means there was a recoverable error in PSOL C caused by the preconditioner being out of date. C -1 means there was a nonrecoverable error in PSOL. C C----------------------------------------------------------------------- INTEGER I, IER, INFO, IP1, I2, J, K, LL, LLP1 DOUBLE PRECISION BNRM,BNRM0,C,DLNRM,PROD,RHO,S,SNORMW,DNRM2,TEM C IFLAG = 0 LGMR = 0 NPSL = 0 C----------------------------------------------------------------------- C The initial residual is the vector b. Apply scaling to b, and test C for an immediate return with X = 0 or X = b. C----------------------------------------------------------------------- DO 10 I = 1,N 10 V(I,1) = B(I)*WGHT(I) BNRM0 = DNRM2 (N, V, 1) BNRM = BNRM0 IF (BNRM0 .GT. DELTA) GO TO 30 IF (MNEWT .GT. 0) GO TO 20 CALL DCOPY (N, B, 1, X, 1) RETURN 20 DO 25 I = 1,N 25 X(I) = 0.0D0 RETURN 30 CONTINUE C Apply inverse of left preconditioner to vector b. -------------------- IER = 0 IF (JPRE .EQ. 0 .OR. JPRE .EQ. 2) GO TO 55 CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, B, 1, IER) NPSL = 1 IF (IER .NE. 0) GO TO 300 C Calculate norm of scaled vector V(*,1) and normalize it. ------------- DO 50 I = 1,N 50 V(I,1) = B(I)*WGHT(I) BNRM = DNRM2 (N, V, 1) DELTA = DELTA*(BNRM/BNRM0) 55 TEM = 1.0D0/BNRM CALL DSCAL (N, TEM, V(1,1), 1) C Zero out the HES array. ---------------------------------------------- DO 65 J = 1,MAXL DO 60 I = 1,MAXLP1 60 HES(I,J) = 0.0D0 65 CONTINUE C----------------------------------------------------------------------- C Main loop to compute the vectors V(*,2) to V(*,MAXL). C The running product PROD is needed for the convergence test. C----------------------------------------------------------------------- PROD = 1.0D0 DO 90 LL = 1,MAXL LGMR = LL C----------------------------------------------------------------------- C Call routine DATV to compute VNEW = Abar*v(ll), where Abar is C the matrix A with scaling and inverse preconditioner factors applied. C Call routine DORTHOG to orthogonalize the new vector VNEW = V(*,LL+1). C Call routine DHEQR to update the factors of HES. C----------------------------------------------------------------------- CALL DATV (NEQ, Y, SAVF, V(1,LL), WGHT, X, F, PSOL, V(1,LL+1), 1 WK, WP, IWP, HL0, JPRE, IER, NPSL) IF (IER .NE. 0) GO TO 300 CALL DORTHOG (V(1,LL+1), V, HES, N, LL, MAXLP1, KMP, SNORMW) HES(LL+1,LL) = SNORMW CALL DHEQR (HES, MAXLP1, LL, Q, INFO, LL) IF (INFO .EQ. LL) GO TO 120 C----------------------------------------------------------------------- C Update RHO, the estimate of the norm of the residual b - A*xl. C If KMP .lt. MAXL, then the vectors V(*,1),...,V(*,LL+1) are not C necessarily orthogonal for LL .gt. KMP. The vector DL must then C be computed, and its norm used in the calculation of RHO. C----------------------------------------------------------------------- PROD = PROD*Q(2*LL) RHO = ABS(PROD*BNRM) IF ((LL.GT.KMP) .AND. (KMP.LT.MAXL)) THEN IF (LL .EQ. KMP+1) THEN CALL DCOPY (N, V(1,1), 1, DL, 1) DO 75 I = 1,KMP IP1 = I + 1 I2 = I*2 S = Q(I2) C = Q(I2-1) DO 70 K = 1,N 70 DL(K) = S*DL(K) + C*V(K,IP1) 75 CONTINUE ENDIF S = Q(2*LL) C = Q(2*LL-1)/SNORMW LLP1 = LL + 1 DO 80 K = 1,N 80 DL(K) = S*DL(K) + C*V(K,LLP1) DLNRM = DNRM2 (N, DL, 1) RHO = RHO*DLNRM ENDIF C----------------------------------------------------------------------- C Test for convergence. If passed, compute approximation xl. C if failed and LL .lt. MAXL, then continue iterating. C----------------------------------------------------------------------- IF (RHO .LE. DELTA) GO TO 200 IF (LL .EQ. MAXL) GO TO 100 C----------------------------------------------------------------------- C Rescale so that the norm of V(1,LL+1) is one. C----------------------------------------------------------------------- TEM = 1.0D0/SNORMW CALL DSCAL (N, TEM, V(1,LL+1), 1) 90 CONTINUE 100 CONTINUE IF (RHO .LE. 1.0D0) GO TO 150 IF (RHO .LE. BNRM .AND. MNEWT .EQ. 0) GO TO 150 120 CONTINUE IFLAG = 2 RETURN 150 IFLAG = 1 C----------------------------------------------------------------------- C Compute the approximation xl to the solution. C Since the vector X was used as work space, and the initial guess C of the Newton correction is zero, X must be reset to zero. C----------------------------------------------------------------------- 200 CONTINUE LL = LGMR LLP1 = LL + 1 DO 210 K = 1,LLP1 210 B(K) = 0.0D0 B(1) = BNRM CALL DHELS (HES, MAXLP1, LL, Q, B) DO 220 K = 1,N 220 X(K) = 0.0D0 DO 230 I = 1,LL CALL DAXPY (N, B(I), V(1,I), 1, X, 1) 230 CONTINUE DO 240 I = 1,N 240 X(I) = X(I)/WGHT(I) IF (JPRE .LE. 1) RETURN CALL PSOL (NEQ, TN, Y, SAVF, WK, HL0, WP, IWP, X, 2, IER) NPSL = NPSL + 1 IF (IER .NE. 0) GO TO 300 RETURN C----------------------------------------------------------------------- C This block handles error returns forced by routine PSOL. C----------------------------------------------------------------------- 300 CONTINUE IF (IER .LT. 0) IFLAG = -1 IF (IER .GT. 0) IFLAG = 3 C RETURN C----------------------- End of Subroutine DSPIGMR --------------------- END