*DECK DSTODE SUBROUTINE DSTODE (NEQ, Y, YH, NYH, YH1, EWT, SAVF, ACOR, 1 WM, IWM, F, JAC, PJAC, SLVS) C***BEGIN PROLOGUE DSTODE C***SUBSIDIARY C***PURPOSE Performs one step of an ODEPACK integration. C***TYPE DOUBLE PRECISION (SSTODE-S, DSTODE-D) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C C DSTODE performs one step of the integration of an initial value C problem for a system of ordinary differential equations. C Note: DSTODE is independent of the value of the iteration method C indicator MITER, when this is .ne. 0, and hence is independent C of the type of chord method used, or the Jacobian structure. C Communication with DSTODE is done with the following variables: C C NEQ = integer array containing problem size in NEQ(1), and C passed as the NEQ argument in all calls to F and JAC. C Y = an array of length .ge. N used as the Y argument in C all calls to F and JAC. C YH = an NYH by LMAX array containing the dependent variables C and their approximate scaled derivatives, where C LMAX = MAXORD + 1. YH(i,j+1) contains the approximate C j-th derivative of y(i), scaled by h**j/factorial(j) C (j = 0,1,...,NQ). on entry for the first step, the first C two columns of YH must be set from the initial values. C NYH = a constant integer .ge. N, the first dimension of YH. C YH1 = a one-dimensional array occupying the same space as YH. C EWT = an array of length N containing multiplicative weights C for local error measurements. Local errors in Y(i) are C compared to 1.0/EWT(i) in various error tests. C SAVF = an array of working storage, of length N. C Also used for input of YH(*,MAXORD+2) when JSTART = -1 C and MAXORD .lt. the current order NQ. C ACOR = a work array of length N, used for the accumulated C corrections. On a successful return, ACOR(i) contains C the estimated one-step local error in Y(i). C WM,IWM = real and integer work arrays associated with matrix C operations in chord iteration (MITER .ne. 0). C PJAC = name of routine to evaluate and preprocess Jacobian matrix C and P = I - h*el0*JAC, if a chord method is being used. C SLVS = name of routine to solve linear system in chord iteration. C CCMAX = maximum relative change in h*el0 before PJAC is called. C H = the step size to be attempted on the next step. C H is altered by the error control algorithm during the C problem. H can be either positive or negative, but its C sign must remain constant throughout the problem. C HMIN = the minimum absolute value of the step size h to be used. C HMXI = inverse of the maximum absolute value of h to be used. C HMXI = 0.0 is allowed and corresponds to an infinite hmax. C HMIN and HMXI may be changed at any time, but will not C take effect until the next change of h is considered. C TN = the independent variable. TN is updated on each step taken. C JSTART = an integer used for input only, with the following C values and meanings: C 0 perform the first step. C .gt.0 take a new step continuing from the last. C -1 take the next step with a new value of H, MAXORD, C N, METH, MITER, and/or matrix parameters. C -2 take the next step with a new value of H, C but with other inputs unchanged. C On return, JSTART is set to 1 to facilitate continuation. C KFLAG = a completion code with the following meanings: C 0 the step was succesful. C -1 the requested error could not be achieved. C -2 corrector convergence could not be achieved. C -3 fatal error in PJAC or SLVS. C A return with KFLAG = -1 or -2 means either C abs(H) = HMIN or 10 consecutive failures occurred. C On a return with KFLAG negative, the values of TN and C the YH array are as of the beginning of the last C step, and H is the last step size attempted. C MAXORD = the maximum order of integration method to be allowed. C MAXCOR = the maximum number of corrector iterations allowed. C MSBP = maximum number of steps between PJAC calls (MITER .gt. 0). C MXNCF = maximum number of convergence failures allowed. C METH/MITER = the method flags. See description in driver. C N = the number of first-order differential equations. C The values of CCMAX, H, HMIN, HMXI, TN, JSTART, KFLAG, MAXORD, C MAXCOR, MSBP, MXNCF, METH, MITER, and N are communicated via COMMON. C C***SEE ALSO DLSODE C***ROUTINES CALLED DCFODE, DVNORM C***COMMON BLOCKS DLS001 C***REVISION HISTORY (YYMMDD) C 791129 DATE WRITTEN C 890501 Modified prologue to SLATEC/LDOC format. (FNF) C 890503 Minor cosmetic changes. (FNF) C 930809 Renamed to allow single/double precision versions. (ACH) C 010418 Reduced size of Common block /DLS001/. (ACH) C 031105 Restored 'own' variables to Common block /DLS001/, to C enable interrupt/restart feature. (ACH) C***END PROLOGUE DSTODE C**End EXTERNAL F, JAC, PJAC, SLVS INTEGER NEQ, NYH, IWM DOUBLE PRECISION Y, YH, YH1, EWT, SAVF, ACOR, WM DIMENSION NEQ(*), Y(*), YH(NYH,*), YH1(*), EWT(*), SAVF(*), 1 ACOR(*), WM(*), IWM(*) INTEGER IOWND, IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU INTEGER I, I1, IREDO, IRET, J, JB, M, NCF, NEWQ DOUBLE PRECISION CONIT, CRATE, EL, ELCO, HOLD, RMAX, TESCO, 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND DOUBLE PRECISION DCON, DDN, DEL, DELP, DSM, DUP, EXDN, EXSM, EXUP, 1 R, RH, RHDN, RHSM, RHUP, TOLD, DVNORM COMMON /DLS001/ CONIT, CRATE, EL(13), ELCO(13,12), 1 HOLD, RMAX, TESCO(3,12), 2 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, 3 IOWND(6), IALTH, IPUP, LMAX, MEO, NQNYH, NSLP, 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU C C***FIRST EXECUTABLE STATEMENT DSTODE KFLAG = 0 TOLD = TN NCF = 0 IERPJ = 0 IERSL = 0 JCUR = 0 ICF = 0 DELP = 0.0D0 IF (JSTART .GT. 0) GO TO 200 IF (JSTART .EQ. -1) GO TO 100 IF (JSTART .EQ. -2) GO TO 160 C----------------------------------------------------------------------- C On the first call, the order is set to 1, and other variables are C initialized. RMAX is the maximum ratio by which H can be increased C in a single step. It is initially 1.E4 to compensate for the small C initial H, but then is normally equal to 10. If a failure C occurs (in corrector convergence or error test), RMAX is set to 2 C for the next increase. C----------------------------------------------------------------------- LMAX = MAXORD + 1 NQ = 1 L = 2 IALTH = 2 RMAX = 10000.0D0 RC = 0.0D0 EL0 = 1.0D0 CRATE = 0.7D0 HOLD = H MEO = METH NSLP = 0 IPUP = MITER IRET = 3 GO TO 140 C----------------------------------------------------------------------- C The following block handles preliminaries needed when JSTART = -1. C IPUP is set to MITER to force a matrix update. C If an order increase is about to be considered (IALTH = 1), C IALTH is reset to 2 to postpone consideration one more step. C If the caller has changed METH, DCFODE is called to reset C the coefficients of the method. C If the caller has changed MAXORD to a value less than the current C order NQ, NQ is reduced to MAXORD, and a new H chosen accordingly. C If H is to be changed, YH must be rescaled. C If H or METH is being changed, IALTH is reset to L = NQ + 1 C to prevent further changes in H for that many steps. C----------------------------------------------------------------------- 100 IPUP = MITER LMAX = MAXORD + 1 IF (IALTH .EQ. 1) IALTH = 2 IF (METH .EQ. MEO) GO TO 110 CALL DCFODE (METH, ELCO, TESCO) MEO = METH IF (NQ .GT. MAXORD) GO TO 120 IALTH = L IRET = 1 GO TO 150 110 IF (NQ .LE. MAXORD) GO TO 160 120 NQ = MAXORD L = LMAX DO 125 I = 1,L 125 EL(I) = ELCO(I,NQ) NQNYH = NQ*NYH RC = RC*EL(1)/EL0 EL0 = EL(1) CONIT = 0.5D0/(NQ+2) DDN = DVNORM (N, SAVF, EWT)/TESCO(1,L) EXDN = 1.0D0/L RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) RH = MIN(RHDN,1.0D0) IREDO = 3 IF (H .EQ. HOLD) GO TO 170 RH = MIN(RH,ABS(H/HOLD)) H = HOLD GO TO 175 C----------------------------------------------------------------------- C DCFODE is called to get all the integration coefficients for the C current METH. Then the EL vector and related constants are reset C whenever the order NQ is changed, or at the start of the problem. C----------------------------------------------------------------------- 140 CALL DCFODE (METH, ELCO, TESCO) 150 DO 155 I = 1,L 155 EL(I) = ELCO(I,NQ) NQNYH = NQ*NYH RC = RC*EL(1)/EL0 EL0 = EL(1) CONIT = 0.5D0/(NQ+2) GO TO (160, 170, 200), IRET C----------------------------------------------------------------------- C If H is being changed, the H ratio RH is checked against C RMAX, HMIN, and HMXI, and the YH array rescaled. IALTH is set to C L = NQ + 1 to prevent a change of H for that many steps, unless C forced by a convergence or error test failure. C----------------------------------------------------------------------- 160 IF (H .EQ. HOLD) GO TO 200 RH = H/HOLD H = HOLD IREDO = 3 GO TO 175 170 RH = MAX(RH,HMIN/ABS(H)) 175 RH = MIN(RH,RMAX) RH = RH/MAX(1.0D0,ABS(H)*HMXI*RH) R = 1.0D0 DO 180 J = 2,L R = R*RH DO 180 I = 1,N 180 YH(I,J) = YH(I,J)*R H = H*RH RC = RC*RH IALTH = L IF (IREDO .EQ. 0) GO TO 690 C----------------------------------------------------------------------- C This section computes the predicted values by effectively C multiplying the YH array by the Pascal Triangle matrix. C RC is the ratio of new to old values of the coefficient H*EL(1). C When RC differs from 1 by more than CCMAX, IPUP is set to MITER C to force PJAC to be called, if a Jacobian is involved. C In any case, PJAC is called at least every MSBP steps. C----------------------------------------------------------------------- 200 IF (ABS(RC-1.0D0) .GT. CCMAX) IPUP = MITER IF (NST .GE. NSLP+MSBP) IPUP = MITER TN = TN + H I1 = NQNYH + 1 DO 215 JB = 1,NQ I1 = I1 - NYH Cdir$ ivdep DO 210 I = I1,NQNYH 210 YH1(I) = YH1(I) + YH1(I+NYH) 215 CONTINUE C----------------------------------------------------------------------- C Up to MAXCOR corrector iterations are taken. A convergence test is C made on the R.M.S. norm of each correction, weighted by the error C weight vector EWT. The sum of the corrections is accumulated in the C vector ACOR(i). The YH array is not altered in the corrector loop. C----------------------------------------------------------------------- 220 M = 0 DO 230 I = 1,N 230 Y(I) = YH(I,1) CALL F (NEQ, TN, Y, SAVF) NFE = NFE + 1 IF (IPUP .LE. 0) GO TO 250 C----------------------------------------------------------------------- C If indicated, the matrix P = I - h*el(1)*J is reevaluated and C preprocessed before starting the corrector iteration. IPUP is set C to 0 as an indicator that this has been done. C----------------------------------------------------------------------- CALL PJAC (NEQ, Y, YH, NYH, EWT, ACOR, SAVF, WM, IWM, F, JAC) IPUP = 0 RC = 1.0D0 NSLP = NST CRATE = 0.7D0 IF (IERPJ .NE. 0) GO TO 430 250 DO 260 I = 1,N 260 ACOR(I) = 0.0D0 270 IF (MITER .NE. 0) GO TO 350 C----------------------------------------------------------------------- C In the case of functional iteration, update Y directly from C the result of the last function evaluation. C----------------------------------------------------------------------- DO 290 I = 1,N SAVF(I) = H*SAVF(I) - YH(I,2) 290 Y(I) = SAVF(I) - ACOR(I) DEL = DVNORM (N, Y, EWT) DO 300 I = 1,N Y(I) = YH(I,1) + EL(1)*SAVF(I) 300 ACOR(I) = SAVF(I) GO TO 400 C----------------------------------------------------------------------- C In the case of the chord method, compute the corrector error, C and solve the linear system with that as right-hand side and C P as coefficient matrix. C----------------------------------------------------------------------- 350 DO 360 I = 1,N 360 Y(I) = H*SAVF(I) - (YH(I,2) + ACOR(I)) CALL SLVS (WM, IWM, Y, SAVF) IF (IERSL .LT. 0) GO TO 430 IF (IERSL .GT. 0) GO TO 410 DEL = DVNORM (N, Y, EWT) DO 380 I = 1,N ACOR(I) = ACOR(I) + Y(I) 380 Y(I) = YH(I,1) + EL(1)*ACOR(I) C----------------------------------------------------------------------- C Test for convergence. If M.gt.0, an estimate of the convergence C rate constant is stored in CRATE, and this is used in the test. C----------------------------------------------------------------------- 400 IF (M .NE. 0) CRATE = MAX(0.2D0*CRATE,DEL/DELP) DCON = DEL*MIN(1.0D0,1.5D0*CRATE)/(TESCO(2,NQ)*CONIT) IF (DCON .LE. 1.0D0) GO TO 450 M = M + 1 IF (M .EQ. MAXCOR) GO TO 410 IF (M .GE. 2 .AND. DEL .GT. 2.0D0*DELP) GO TO 410 DELP = DEL CALL F (NEQ, TN, Y, SAVF) NFE = NFE + 1 GO TO 270 C----------------------------------------------------------------------- C The corrector iteration failed to converge. C If MITER .ne. 0 and the Jacobian is out of date, PJAC is called for C the next try. Otherwise the YH array is retracted to its values C before prediction, and H is reduced, if possible. If H cannot be C reduced or MXNCF failures have occurred, exit with KFLAG = -2. C----------------------------------------------------------------------- 410 IF (MITER .EQ. 0 .OR. JCUR .EQ. 1) GO TO 430 ICF = 1 IPUP = MITER GO TO 220 430 ICF = 2 NCF = NCF + 1 RMAX = 2.0D0 TN = TOLD I1 = NQNYH + 1 DO 445 JB = 1,NQ I1 = I1 - NYH Cdir$ ivdep DO 440 I = I1,NQNYH 440 YH1(I) = YH1(I) - YH1(I+NYH) 445 CONTINUE IF (IERPJ .LT. 0 .OR. IERSL .LT. 0) GO TO 680 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 670 IF (NCF .EQ. MXNCF) GO TO 670 RH = 0.25D0 IPUP = MITER IREDO = 1 GO TO 170 C----------------------------------------------------------------------- C The corrector has converged. JCUR is set to 0 C to signal that the Jacobian involved may need updating later. C The local error test is made and control passes to statement 500 C if it fails. C----------------------------------------------------------------------- 450 JCUR = 0 IF (M .EQ. 0) DSM = DEL/TESCO(2,NQ) IF (M .GT. 0) DSM = DVNORM (N, ACOR, EWT)/TESCO(2,NQ) IF (DSM .GT. 1.0D0) GO TO 500 C----------------------------------------------------------------------- C After a successful step, update the YH array. C Consider changing H if IALTH = 1. Otherwise decrease IALTH by 1. C If IALTH is then 1 and NQ .lt. MAXORD, then ACOR is saved for C use in a possible order increase on the next step. C If a change in H is considered, an increase or decrease in order C by one is considered also. A change in H is made only if it is by a C factor of at least 1.1. If not, IALTH is set to 3 to prevent C testing for that many steps. C----------------------------------------------------------------------- KFLAG = 0 IREDO = 0 NST = NST + 1 HU = H NQU = NQ DO 470 J = 1,L DO 470 I = 1,N 470 YH(I,J) = YH(I,J) + EL(J)*ACOR(I) IALTH = IALTH - 1 IF (IALTH .EQ. 0) GO TO 520 IF (IALTH .GT. 1) GO TO 700 IF (L .EQ. LMAX) GO TO 700 DO 490 I = 1,N 490 YH(I,LMAX) = ACOR(I) GO TO 700 C----------------------------------------------------------------------- C The error test failed. KFLAG keeps track of multiple failures. C Restore TN and the YH array to their previous values, and prepare C to try the step again. Compute the optimum step size for this or C one lower order. After 2 or more failures, H is forced to decrease C by a factor of 0.2 or less. C----------------------------------------------------------------------- 500 KFLAG = KFLAG - 1 TN = TOLD I1 = NQNYH + 1 DO 515 JB = 1,NQ I1 = I1 - NYH Cdir$ ivdep DO 510 I = I1,NQNYH 510 YH1(I) = YH1(I) - YH1(I+NYH) 515 CONTINUE RMAX = 2.0D0 IF (ABS(H) .LE. HMIN*1.00001D0) GO TO 660 IF (KFLAG .LE. -3) GO TO 640 IREDO = 2 RHUP = 0.0D0 GO TO 540 C----------------------------------------------------------------------- C Regardless of the success or failure of the step, factors C RHDN, RHSM, and RHUP are computed, by which H could be multiplied C at order NQ - 1, order NQ, or order NQ + 1, respectively. C In the case of failure, RHUP = 0.0 to avoid an order increase. C The largest of these is determined and the new order chosen C accordingly. If the order is to be increased, we compute one C additional scaled derivative. C----------------------------------------------------------------------- 520 RHUP = 0.0D0 IF (L .EQ. LMAX) GO TO 540 DO 530 I = 1,N 530 SAVF(I) = ACOR(I) - YH(I,LMAX) DUP = DVNORM (N, SAVF, EWT)/TESCO(3,NQ) EXUP = 1.0D0/(L+1) RHUP = 1.0D0/(1.4D0*DUP**EXUP + 0.0000014D0) 540 EXSM = 1.0D0/L RHSM = 1.0D0/(1.2D0*DSM**EXSM + 0.0000012D0) RHDN = 0.0D0 IF (NQ .EQ. 1) GO TO 560 DDN = DVNORM (N, YH(1,L), EWT)/TESCO(1,NQ) EXDN = 1.0D0/NQ RHDN = 1.0D0/(1.3D0*DDN**EXDN + 0.0000013D0) 560 IF (RHSM .GE. RHUP) GO TO 570 IF (RHUP .GT. RHDN) GO TO 590 GO TO 580 570 IF (RHSM .LT. RHDN) GO TO 580 NEWQ = NQ RH = RHSM GO TO 620 580 NEWQ = NQ - 1 RH = RHDN IF (KFLAG .LT. 0 .AND. RH .GT. 1.0D0) RH = 1.0D0 GO TO 620 590 NEWQ = L RH = RHUP IF (RH .LT. 1.1D0) GO TO 610 R = EL(L)/L DO 600 I = 1,N 600 YH(I,NEWQ+1) = ACOR(I)*R GO TO 630 610 IALTH = 3 GO TO 700 620 IF ((KFLAG .EQ. 0) .AND. (RH .LT. 1.1D0)) GO TO 610 IF (KFLAG .LE. -2) RH = MIN(RH,0.2D0) C----------------------------------------------------------------------- C If there is a change of order, reset NQ, l, and the coefficients. C In any case H is reset according to RH and the YH array is rescaled. C Then exit from 690 if the step was OK, or redo the step otherwise. C----------------------------------------------------------------------- IF (NEWQ .EQ. NQ) GO TO 170 630 NQ = NEWQ L = NQ + 1 IRET = 2 GO TO 150 C----------------------------------------------------------------------- C Control reaches this section if 3 or more failures have occured. C If 10 failures have occurred, exit with KFLAG = -1. C It is assumed that the derivatives that have accumulated in the C YH array have errors of the wrong order. Hence the first C derivative is recomputed, and the order is set to 1. Then C H is reduced by a factor of 10, and the step is retried, C until it succeeds or H reaches HMIN. C----------------------------------------------------------------------- 640 IF (KFLAG .EQ. -10) GO TO 660 RH = 0.1D0 RH = MAX(HMIN/ABS(H),RH) H = H*RH DO 645 I = 1,N 645 Y(I) = YH(I,1) CALL F (NEQ, TN, Y, SAVF) NFE = NFE + 1 DO 650 I = 1,N 650 YH(I,2) = H*SAVF(I) IPUP = MITER IALTH = 5 IF (NQ .EQ. 1) GO TO 200 NQ = 1 L = 2 IRET = 3 GO TO 150 C----------------------------------------------------------------------- C All returns are made through this section. H is saved in HOLD C to allow the caller to change H on the next step. C----------------------------------------------------------------------- 660 KFLAG = -1 GO TO 720 670 KFLAG = -2 GO TO 720 680 KFLAG = -3 GO TO 720 690 RMAX = 10.0D0 700 R = 1.0D0/TESCO(2,NQU) DO 710 I = 1,N 710 ACOR(I) = ACOR(I)*R 720 HOLD = H JSTART = 1 RETURN C----------------------- END OF SUBROUTINE DSTODE ---------------------- END