subroutine md * (n, ia,ja, max, v,l, head,last,next, mark, flag) c*********************************************************************** c md -- minimum degree algorithm (based on element model) c*********************************************************************** c c description c c md finds a minimum degree ordering of the rows and columns of a c general sparse matrix m stored in (ia,ja,a) format. c when the structure of m is nonsymmetric, the ordering is that c obtained for the symmetric matrix m + m-transpose. c c c additional parameters c c max - declared dimension of the one-dimensional arrays v and l. c max must be at least n+2k, where k is the number of c nonzeroes in the strict upper triangle of m + m-transpose c c v - integer one-dimensional work array. dimension = max c c l - integer one-dimensional work array. dimension = max c c head - integer one-dimensional work array. dimension = n c c last - integer one-dimensional array used to return the permutation c of the rows and columns of m corresponding to the minimum c degree ordering. dimension = n c c next - integer one-dimensional array used to return the inverse of c the permutation returned in last. dimension = n c c mark - integer one-dimensional work array (may be the same as v). c dimension = n c c flag - integer error flag. values and their meanings are - c 0 no errors detected c 9n+k insufficient storage in md c c c definitions of internal parameters c c ---------+--------------------------------------------------------- c v(s) - value field of list entry c ---------+--------------------------------------------------------- c l(s) - link field of list entry (0 =) end of list) c ---------+--------------------------------------------------------- c l(vi) - pointer to element list of uneliminated vertex vi c ---------+--------------------------------------------------------- c l(ej) - pointer to boundary list of active element ej c ---------+--------------------------------------------------------- c head(d) - vj =) vj head of d-list d c - 0 =) no vertex in d-list d c c c - vi uneliminated vertex c - vi in ek - vi not in ek c ---------+-----------------------------+--------------------------- c next(vi) - undefined but nonnegative - vj =) vj next in d-list c - - 0 =) vi tail of d-list c ---------+-----------------------------+--------------------------- c last(vi) - (not set until mdp) - -d =) vi head of d-list d c --vk =) compute degree - vj =) vj last in d-list c - ej =) vi prototype of ej - 0 =) vi not in any d-list c - 0 =) do not compute degree - c ---------+-----------------------------+--------------------------- c mark(vi) - mark(vk) - nonneg. tag .lt. mark(vk) c c c - vi eliminated vertex c - ei active element - otherwise c ---------+-----------------------------+--------------------------- c next(vi) - -j =) vi was j-th vertex - -j =) vi was j-th vertex c - to be eliminated - to be eliminated c ---------+-----------------------------+--------------------------- c last(vi) - m =) size of ei = m - undefined c ---------+-----------------------------+--------------------------- c mark(vi) - -m =) overlap count of ei - undefined c - with ek = m - c - otherwise nonnegative tag - c - .lt. mark(vk) - c c----------------------------------------------------------------------- c integer ia(*), ja(*), v(*), l(*), head(*), last(*), next(*), * mark(*), flag, tag, dmin, vk,ek, tail equivalence (vk,ek) c c----initialization tag = 0 call mdi * (n, ia,ja, max,v,l, head,last,next, mark,tag, flag) if (flag.ne.0) return c k = 0 dmin = 1 c c----while k .lt. n do 1 if (k.ge.n) go to 4 c c------search for vertex of minimum degree 2 if (head(dmin).gt.0) go to 3 dmin = dmin + 1 go to 2 c c------remove vertex vk of minimum degree from degree list 3 vk = head(dmin) head(dmin) = next(vk) if (head(dmin).gt.0) last(head(dmin)) = -dmin c c------number vertex vk, adjust tag, and tag vk k = k+1 next(vk) = -k last(ek) = dmin - 1 tag = tag + last(ek) mark(vk) = tag c c------form element ek from uneliminated neighbors of vk call mdm * (vk,tail, v,l, last,next, mark) c c------purge inactive elements and do mass elimination call mdp * (k,ek,tail, v,l, head,last,next, mark) c c------update degrees of uneliminated vertices in ek call mdu * (ek,dmin, v,l, head,last,next, mark) c go to 1 c c----generate inverse permutation from permutation 4 do 5 k=1,n next(k) = -next(k) 5 last(next(k)) = k c return end