subroutine sro * (n, ip, ia,ja,a, q, r, dflag) c*********************************************************************** c sro -- symmetric reordering of sparse symmetric matrix c*********************************************************************** c c description c c the nonzero entries of the matrix m are assumed to be stored c symmetrically in (ia,ja,a) format (i.e., not both m(i,j) and m(j,i) c are stored if i ne j). c c sro does not rearrange the order of the rows, but does move c nonzeroes from one row to another to ensure that if m(i,j) will be c in the upper triangle of m with respect to the new ordering, then c m(i,j) is stored in row i (and thus m(j,i) is not stored), whereas c if m(i,j) will be in the strict lower triangle of m, then m(j,i) is c stored in row j (and thus m(i,j) is not stored). c c c additional parameters c c q - integer one-dimensional work array. dimension = n c c r - integer one-dimensional work array. dimension = number of c nonzero entries in the upper triangle of m c c dflag - logical variable. if dflag = .true., then store nonzero c diagonal elements at the beginning of the row c c----------------------------------------------------------------------- c integer ip(*), ia(*), ja(*), q(*), r(*) c... real a(*), ak double precision a(*), ak logical dflag c c c--phase 1 -- find row in which to store each nonzero c----initialize count of nonzeroes to be stored in each row do 1 i=1,n 1 q(i) = 0 c c----for each nonzero element a(j) do 3 i=1,n jmin = ia(i) jmax = ia(i+1) - 1 if (jmin.gt.jmax) go to 3 do 2 j=jmin,jmax c c--------find row (=r(j)) and column (=ja(j)) in which to store a(j) ... k = ja(j) if (ip(k).lt.ip(i)) ja(j) = i if (ip(k).ge.ip(i)) k = i r(j) = k c c--------... and increment count of nonzeroes (=q(r(j)) in that row 2 q(k) = q(k) + 1 3 continue c c c--phase 2 -- find new ia and permutation to apply to (ja,a) c----determine pointers to delimit rows in permuted (ja,a) do 4 i=1,n ia(i+1) = ia(i) + q(i) 4 q(i) = ia(i+1) c c----determine where each (ja(j),a(j)) is stored in permuted (ja,a) c----for each nonzero element (in reverse order) ilast = 0 jmin = ia(1) jmax = ia(n+1) - 1 j = jmax do 6 jdummy=jmin,jmax i = r(j) if (.not.dflag .or. ja(j).ne.i .or. i.eq.ilast) go to 5 c c------if dflag, then put diagonal nonzero at beginning of row r(j) = ia(i) ilast = i go to 6 c c------put (off-diagonal) nonzero in last unused location in row 5 q(i) = q(i) - 1 r(j) = q(i) c 6 j = j-1 c c c--phase 3 -- permute (ja,a) to upper triangular form (wrt new ordering) do 8 j=jmin,jmax 7 if (r(j).eq.j) go to 8 k = r(j) r(j) = r(k) r(k) = k jak = ja(k) ja(k) = ja(j) ja(j) = jak ak = a(k) a(k) = a(j) a(j) = ak go to 7 8 continue c return end