TITLE detailed model of GABA-A receptors
COMMENT
-----------------------------------------------------------------------------
Kinetic model of GABA-A receptors
=================================
5-state gating model from Busch and Sakmann (Cold Spring Harbor
Symp. Quant. Biol. 55: 69-80, 1990)
C -- C1 -- C2
| |
O1 O2
-----------------------------------------------------------------------------
Based on voltage-clamp recordings of GABAA receptor-mediated currents in rat
hippocampal slices (Otis and Mody, Neuroscience 49: 13-32, 1992), this model
was fit directly to experimental recordings in order to obtain the optimal
values for the parameters (see Destexhe, Mainen and Sejnowski, 1996).
-----------------------------------------------------------------------------
This mod file does not include mechanisms for the release and time course
of transmitter; it is to be used in conjunction with a sepearate mechanism
to describe the release of transmitter and that provides the concentration
of transmitter in the synaptic cleft (to be connected to pointer C here).
-----------------------------------------------------------------------------
See details in:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp. 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
Written by Alain Destexhe, Laval University, 1995
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS GABAa5
POINTER C
RANGE C0, C1, C2, O1, O2
RANGE g, gmax, f1, f2
GLOBAL Erev, kf1, kf2, kb1, kb2, a1, b1, a2, b2
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = -80 (mV) : reversal potential
gmax = 500 (pS) : maximal conductance
: Rates
: from Destexhe, Mainen and Sejnowski, 1996
kf1 = 0.02 (/uM /ms) : binding
kf2 = 0.01 (/uM /ms) : binding
kb1 = 4.6 (/ms) : unbinding
kb2 = 9.2 (/ms) : unbinding
a1 = 3.3 (/ms) : opening
b1 = 9.8 (/ms) : closing
a2 = 10.6 (/ms) : opening
b2 = 0.41 (/ms) : closing
}
COMMENT
: from Busch and Sakmann
kf1 = 0.2 (/uM /ms) : binding
kf2 = 0.1 (/uM /ms) : binding
kb1 = 3 (/ms) : unbinding
kb2 = 6 (/ms) : unbinding
a1 = 0.7 (/ms) : opening
b1 = 4 (/ms) : closing
a2 = 10 (/ms) : opening
b2 = 0.055 (/ms) : closing
ENDCOMMENT
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (pS) : conductance
C (mM) : pointer to glutamate concentration
f1 (/ms) : binding
f2 (/ms) : binding
}
STATE {
: Channel states (all fractions)
C0 : unbound
C1 : single bound
C2 : double bound
O1 : open
O2 : open
}
INITIAL {
C0 = 1
C1 = 0
C2 = 0
O1 = 0
O2 = 0
}
BREAKPOINT {
SOLVE kstates METHOD sparse
g = gmax * (O1+O2)
i = (1e-6) * g * (v - Erev)
}
KINETIC kstates {
f1 = kf1 * (1e3) * C
f2 = kf2 * (1e3) * C
~ C0 <-> C1 (f1,kb1)
~ C1 <-> C2 (f2,kb2)
~ C1 <-> O1 (a1,b1)
~ C2 <-> O2 (a2,b2)
CONSERVE C0+C1+C2+O1+O2 = 1
}