TITLE detailed model of glutamate NMDA receptors
COMMENT
-----------------------------------------------------------------------------
Kinetic model of NMDA receptors
===============================
5-state gating model:
Clements & Westbrook 1991. Neuron 7: 605.
Lester & Jahr 1992. J Neurosci 12: 635.
Edmonds & Colquhoun 1992. Proc. R. Soc. Lond. B 250: 279.
Hessler, Shirke & Malinow. 1993. Nature 366: 569.
Clements et al. 1992. Science 258: 1498.
C -- C1 -- C2 -- O
|
D
Voltage dependence of Mg2+ block:
Jahr & Stevens 1990. J Neurosci 10: 1830.
Jahr & Stevens 1990. J Neurosci 10: 3178.
-----------------------------------------------------------------------------
Based on voltage-clamp recordings of NMDA receptor-mediated currents in rat
hippocampal slices (Hessler et al., Nature 366: 569-572, 1993), this model
was fit directly to experimental recordings in order to obtain the optimal
values for the parameters (see Destexhe, Mainen and Sejnowski, 1996).
-----------------------------------------------------------------------------
This mod file does not include mechanisms for the release and time course
of transmitter; it is to be used in conjunction with a sepearate mechanism
to describe the release of transmitter and that provides the concentration
of transmitter in the synaptic cleft (to be connected to pointer C here).
-----------------------------------------------------------------------------
See details in:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
Written by Alain Destexhe and Zach Mainen, 1995
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS NMDA5
POINTER C
RANGE C0, C1, C2, D, O, B
RANGE g, gmax, rb
GLOBAL Erev, mg, Rb, Ru, Rd, Rr, Ro, Rc
GLOBAL vmin, vmax
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = 0 (mV) : reversal potential
gmax = 500 (pS) : maximal conductance
mg = 0 (mM) : external magnesium concentration
vmin = -120 (mV)
vmax = 100 (mV)
: Rates
: Destexhe, Mainen & Sejnowski, 1996
Rb = 5e-3 (/uM /ms) : binding
Ru = 12.9e-3 (/ms) : unbinding
Rd = 8.4e-3 (/ms) : desensitization
Rr = 6.8e-3 (/ms) : resensitization
Ro = 46.5e-3 (/ms) : opening
Rc = 73.8e-3 (/ms) : closing
}
COMMENT
: Clements et al. 1992
Rb = 5e-3 (/uM /ms) : binding
Ru = 9.5e-3 (/ms) : unbinding
Rd = 16e-3 (/ms) : desensitization
Rr = 13e-3 (/ms) : resensitization
Ro = 25e-3 (/ms) : opening
Rc = 59e-3 (/ms) : closing
: Hessler Shirke & Malinow 1993
Rb = 5e-3 (/uM /ms) : binding
Ru = 9.5e-3 (/ms) : unbinding
Rd = 16e-3 (/ms) : desensitization
Rr = 13e-3 (/ms) : resensitization
Ro = 25e-3 (/ms) : opening
Rc = 59e-3 (/ms) : closing
: Clements & Westbrook 1991
Rb = 5 (uM /s) : binding
Ru = 5 (/s) : unbinding -> gives Kd = Rb/Ru = 1 uM
Rd = 4.0 (/s) : desensitization
Rr = 0.3 (/s) : resensitization
Ro = 10 (/s) : opening
Rc = 322 (/s) : closing
: Edmonds & Colquhoun 1992
Rb = 5 (uM /s) : binding
Ru = 4.7 (/s) : unbinding
Rd = 8.4 (/s) : desensitization
Rr = 1.8 (/s) : resensitization
Ro = 46.5 (/s) : opening
Rc = 91.6 (/s) : closing
: Lester & Jahr 1992
Rb = 5 (uM /s) : binding
Ru = 6.7 (/s) : unbinding
Rd = 15.2 (/s) : desensitization
Rr = 9.4 (/s) : resensitization
Ro = 83.8 (/s) : opening
Rc = 83.8 (/s) : closing
ENDCOMMENT
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (pS) : conductance
C (mM) : pointer to glutamate concentration
rb (/ms) : binding
}
STATE {
: Channel states (all fractions)
C0 : unbound
C1 : single bound
C2 : double bound
D : desensitized
O : open
B : fraction free of Mg2+ block
}
INITIAL {
rates(v)
C0 = 1
}
BREAKPOINT {
rates(v)
SOLVE kstates METHOD sparse
g = gmax * O * B
i = (1e-6) * g * (v - Erev)
}
KINETIC kstates {
rb = Rb * (1e3) * C
~ C0 <-> C1 (rb,Ru)
~ C1 <-> C2 (rb,Ru)
~ C2 <-> D (Rd,Rr)
~ C2 <-> O (Ro,Rc)
CONSERVE C0+C1+C2+D+O = 1
}
PROCEDURE rates(v(mV)) {
TABLE B
DEPEND mg
FROM vmin TO vmax WITH 200
: from Jahr & Stevens
B = 1 / (1 + exp(0.062 (/mV) * -v) * (mg / 3.57 (mM)))
}