/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__dcnCalConc
#define _nrn_initial _nrn_initial__dcnCalConc
#define nrn_cur _nrn_cur__dcnCalConc
#define _nrn_current _nrn_current__dcnCalConc
#define nrn_jacob _nrn_jacob__dcnCalConc
#define nrn_state _nrn_state__dcnCalConc
#define _net_receive _net_receive__dcnCalConc
#define states states__dcnCalConc
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define kCal _p[0]
#define depth _p[1]
#define C _p[2]
#define D _p[3]
#define ical _p[4]
#define cali _p[5]
#define Dcali _p[6]
#define v _p[7]
#define _g _p[8]
#define _ion_ical *_ppvar[0]._pval
#define _ion_cali *_ppvar[1]._pval
#define _style_cal *((int*)_ppvar[2]._pvoid)
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_dcnCalConc", _hoc_setdata,
0, 0
};
/* declare global and static user variables */
#define caliBase caliBase_dcnCalConc
double caliBase = 5e-005;
#define tauCal tauCal_dcnCalConc
double tauCal = 70;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"tauCal_dcnCalConc", "ms",
"caliBase_dcnCalConc", "mM",
"kCal_dcnCalConc", "1/coulomb",
"depth_dcnCalConc", "micron",
0,0
};
static double cali0 = 0;
static double delta_t = 0.01;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"tauCal_dcnCalConc", &tauCal_dcnCalConc,
"caliBase_dcnCalConc", &caliBase_dcnCalConc,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"dcnCalConc",
"kCal_dcnCalConc",
"depth_dcnCalConc",
0,
0,
0,
0};
static Symbol* _cal_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 9, _prop);
/*initialize range parameters*/
kCal = 3.45e-007;
depth = 0.2;
_prop->param = _p;
_prop->param_size = 9;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_cal_sym);
nrn_check_conc_write(_prop, prop_ion, 1);
nrn_promote(prop_ion, 3, 0);
_ppvar[0]._pval = &prop_ion->param[3]; /* ical */
_ppvar[1]._pval = &prop_ion->param[1]; /* cali */
_ppvar[2]._pvoid = (void*)(&(prop_ion->dparam[0]._i)); /* iontype for cal */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _dcn_CalConc_reg() {
int _vectorized = 1;
_initlists();
ion_reg("cal", 2.0);
_cal_sym = hoc_lookup("cal_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 9, 4);
hoc_register_dparam_semantics(_mechtype, 0, "cal_ion");
hoc_register_dparam_semantics(_mechtype, 1, "cal_ion");
hoc_register_dparam_semantics(_mechtype, 2, "#cal_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
nrn_writes_conc(_mechtype, 0);
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 dcnCalConc D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/dcn_CalConc.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double PI = 3.14159;
static int _reset;
static char *modelname = "Intracellular calcium concentration from the CaLVA channel in deep cerebellar nucleus (DCN) neuron";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[1], _dlist1[1];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
C = ( cali - caliBase ) / tauCal ;
D = - kCal / depth * ical * ( 1e4 ) ;
Dcali = D - C ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
C = ( cali - caliBase ) / tauCal ;
D = - kCal / depth * ical * ( 1e4 ) ;
Dcali = Dcali / (1. - dt*( 0.0 )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
C = ( cali - caliBase ) / tauCal ;
D = - kCal / depth * ical * ( 1e4 ) ;
cali = cali - dt*(- ( D - C ) ) ;
}
return 0;
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ical = _ion_ical;
cali = _ion_cali;
_ode_spec1 (_p, _ppvar, _thread, _nt);
_ion_cali = cali;
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
_pv[0] = &(_ion_cali);
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ical = _ion_ical;
cali = _ion_cali;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_cal_sym, _ppvar, 0, 3);
nrn_update_ion_pointer(_cal_sym, _ppvar, 1, 1);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
{
cali = caliBase ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ical = _ion_ical;
cali = _ion_cali;
initmodel(_p, _ppvar, _thread, _nt);
_ion_cali = cali;
nrn_wrote_conc(_cal_sym, (&(_ion_cali)) - 1, _style_cal);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ical = _ion_ical;
cali = _ion_cali;
{ states(_p, _ppvar, _thread, _nt);
} {
}
_ion_cali = cali;
}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(cali) - _p; _dlist1[0] = &(Dcali) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "dcn_CalConc.mod";
static const char* nmodl_file_text =
"TITLE Intracellular calcium concentration from the CaLVA channel in deep cerebellar nucleus (DCN) neuron\n"
"COMMENT\n"
" This mechanism keeps track of intracellular calcium entering the cell through\n"
" the CaLVA channel, with the sole purpose of setting the conductance of the \n"
" channel which uses the GHK equation to calculate current flow.\n"
" \n"
" The mechanism is a copy of the CaConc.mod and thus uses the same method of\n"
" tracking Ca concentration merely in a hypothetical shell below the membrane\n"
" of the cell.\n"
"ENDCOMMENT\n"
"\n"
"NEURON {\n"
" SUFFIX dcnCalConc\n"
" USEION cal READ ical WRITE cali VALENCE 2 \n"
" RANGE cali, kCal, depth\n"
" GLOBAL tauCal\n"
"}\n"
"\n"
"UNITS {\n"
" (molar) = (1 / liter)\n"
" (mM) = (millimolar)\n"
" (mV) = (millivolt)\n"
" (mA) = (milliamp)\n"
" PI = (pi) (1)\n"
"}\n"
"\n"
"PARAMETER {\n"
" : qdeltat has been skipped here and is used via the division of this NMODL's\n"
" : tauCal when it's inserted (in hoc).\n"
"\n"
" : kCa in the following is given for the soma and shall be adjusted\n"
" : from hoc when the CaConc model is inserted in a dendrite: 1.04e-6\n"
" : in the dendritic compartments units. kCa is here given as 1 / coulombs\n"
" : instead of moles / coulomb as in the GENESIS code since mole\n"
" : in NEURON simply equals the number 6.022 * 10e23\n"
" kCal = 3.45e-7 (1/coulomb)\n"
" tauCal = 70 (ms)\n"
" caliBase = 50e-6 (mM) : the resting intracellular calcium conc =50 nM\n"
" depth = 0.2 (micron)\n"
"}\n"
"\n"
"ASSIGNED {\n"
" C (kilo / m3 / s)\n"
" D (kilo / m3 / s)\n"
" ical (mA/cm2)\n"
"}\n"
"\n"
"STATE {\n"
" cali (mM)\n"
"}\n"
"\n"
"INITIAL {\n"
" cali = caliBase\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" C = (cali - caliBase) / tauCal\n"
" D = - kCal / depth * ical * (1e4)\n"
" cali' = D - C\n"
"}\n"
;
#endif