/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__GoC
#define _nrn_initial _nrn_initial__GoC
#define nrn_cur _nrn_cur__GoC
#define _nrn_current _nrn_current__GoC
#define nrn_jacob _nrn_jacob__GoC
#define nrn_state _nrn_state__GoC
#define _net_receive _net_receive__GoC 
#define state state__GoC 
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define e_ampa _p[0]
#define tau_ampa _p[1]
#define e_gaba _p[2]
#define tau_gaba _p[3]
#define i_ampa _p[4]
#define i_gaba _p[5]
#define v_GoC _p[6]
#define g_ampa _p[7]
#define g_gaba _p[8]
#define Dv_GoC _p[9]
#define Dg_ampa _p[10]
#define Dg_gaba _p[11]
#define v _p[12]
#define _g _p[13]
#define _tsav _p[14]
#define _nd_area  *_ppvar[0]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 /* declaration of user functions */
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern Prop* nrn_point_prop_;
 static int _pointtype;
 static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
 return create_point_process(_pointtype, _ho);
}
 static void _hoc_destroy_pnt();
 static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
 return loc_point_process(_pointtype, _vptr);
}
 static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
 return has_loc_point(_vptr);
}
 static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
 double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata(void* _vptr) { Prop* _prop;
 _prop = ((Point_process*)_vptr)->_prop;
   _setdata(_prop);
 }
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 0,0
};
 static Member_func _member_func[] = {
 "loc", _hoc_loc_pnt,
 "has_loc", _hoc_has_loc,
 "get_loc", _hoc_get_loc_pnt,
 0, 0
};
 /* declare global and static user variables */
#define Cm Cm_GoC
 double Cm = 50;
#define Grest Grest_GoC
 double Grest = 3;
#define epas epas_GoC
 double epas = -65;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "Cm_GoC", "pF",
 "epas_GoC", "mV",
 "Grest_GoC", "nS",
 "e_ampa", "mV",
 "tau_ampa", "ms",
 "e_gaba", "mV",
 "tau_gaba", "ms",
 "v_GoC", "mV",
 "g_ampa", "uS",
 "g_gaba", "uS",
 "i_ampa", "nA",
 "i_gaba", "nA",
 0,0
};
 static double delta_t = 0.01;
 static double g_gaba0 = 0;
 static double g_ampa0 = 0;
 static double v_GoC0 = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "Cm_GoC", &Cm_GoC,
 "epas_GoC", &epas_GoC,
 "Grest_GoC", &Grest_GoC,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 static void _hoc_destroy_pnt(_vptr) void* _vptr; {
   destroy_point_process(_vptr);
}
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[2]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"GoC",
 "e_ampa",
 "tau_ampa",
 "e_gaba",
 "tau_gaba",
 0,
 "i_ampa",
 "i_gaba",
 0,
 "v_GoC",
 "g_ampa",
 "g_gaba",
 0,
 0};
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
  if (nrn_point_prop_) {
	_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
	_p = nrn_point_prop_->param;
	_ppvar = nrn_point_prop_->dparam;
 }else{
 	_p = nrn_prop_data_alloc(_mechtype, 15, _prop);
 	/*initialize range parameters*/
 	e_ampa = 0;
 	tau_ampa = 0.5;
 	e_gaba = -65;
 	tau_gaba = 10;
  }
 	_prop->param = _p;
 	_prop->param_size = 15;
  if (!nrn_point_prop_) {
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
  }
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 static void _net_receive(Point_process*, double*, double);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _grl_goc_reg() {
	int _vectorized = 1;
  _initlists();
 	_pointtype = point_register_mech(_mechanism,
	 nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
	 hoc_nrnpointerindex, 1,
	 _hoc_create_pnt, _hoc_destroy_pnt, _member_func);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 15, 3);
  hoc_register_dparam_semantics(_mechtype, 0, "area");
  hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
  hoc_register_dparam_semantics(_mechtype, 2, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 add_nrn_has_net_event(_mechtype);
 pnt_receive[_mechtype] = _net_receive;
 pnt_receive_size[_mechtype] = 1;
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 GoC D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/grl_goc.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
static int _reset;
static char *modelname = "Golgi cell in the granular layer (GrL)";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[3], _dlist1[3];
 static int state(_threadargsproto_);
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   Dv_GoC = ( i_ampa + i_gaba + Grest * ( epas - v_GoC ) ) / Cm ;
   Dg_ampa = - g_ampa / tau_ampa ;
   Dg_gaba = - g_gaba / tau_gaba ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 Dv_GoC = Dv_GoC  / (1. - dt*( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm )) ;
 Dg_ampa = Dg_ampa  / (1. - dt*( ( - 1.0 ) / tau_ampa )) ;
 Dg_gaba = Dg_gaba  / (1. - dt*( ( - 1.0 ) / tau_gaba )) ;
  return 0;
}
 /*END CVODE*/
 static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
    v_GoC = v_GoC + (1. - exp(dt*(( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm)))*(- ( ( ( i_ampa + i_gaba + ( Grest )*( ( epas ) ) ) ) / Cm ) / ( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm ) - v_GoC) ;
    g_ampa = g_ampa + (1. - exp(dt*(( - 1.0 ) / tau_ampa)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_ampa ) - g_ampa) ;
    g_gaba = g_gaba + (1. - exp(dt*(( - 1.0 ) / tau_gaba)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_gaba ) - g_gaba) ;
   }
  return 0;
}
 
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag; 
{  double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt;   _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
  if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
 _tsav = t; {
   if ( _args[0] >= 15.0 ) {
       if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = g_ampa;
    double __primary = (g_ampa + _args[0]) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_ampa ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_ampa ) - __primary );
    g_ampa += __primary;
  } else {
 g_ampa = g_ampa + _args[0] ;
       }
 }
   if ( _args[0] >= 1.0  && _args[0] <= 15.0 ) {
       if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = g_gaba;
    double __primary = (g_gaba + _args[0]) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_gaba ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_gaba ) - __primary );
    g_gaba += __primary;
  } else {
 g_gaba = g_gaba + _args[0] ;
       }
 }
   if ( _args[0] >= 0.01  && _args[0] <= 0.03  && v_GoC > - 50.0 ) {
       if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = v_GoC;
    double __primary = (20.0) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm ) ) )*( - ( ( ( i_ampa + i_gaba + ( Grest )*( ( epas ) ) ) ) / Cm ) / ( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm ) - __primary );
    v_GoC += __primary;
  } else {
 v_GoC = 20.0 ;
       }
 net_event ( _pnt, t ) ;
       if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = g_ampa;
    double __primary = (0.0) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_ampa ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_ampa ) - __primary );
    g_ampa += __primary;
  } else {
 g_ampa = 0.0 ;
       }
   if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = g_gaba;
    double __primary = (0.0) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_gaba ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_gaba ) - __primary );
    g_gaba += __primary;
  } else {
 g_gaba = 0.0 ;
       }
 }
   } }
 
static int _ode_count(int _type){ return 3;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
     _ode_spec1 (_p, _ppvar, _thread, _nt);
 }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 3; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
 _ode_matsol_instance1(_threadargs_);
 }}

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  g_gaba = g_gaba0;
  g_ampa = g_ampa0;
  v_GoC = v_GoC0;
 {
   v_GoC = epas ;
   g_ampa = 0.0 ;
   g_gaba = 0.0 ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _tsav = -1e20;
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
 initmodel(_p, _ppvar, _thread, _nt);
}
}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{
} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 
}
 
}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}
 
}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
 {   state(_p, _ppvar, _thread, _nt);
  } {
   if ( v_GoC > 10.0  && v_GoC < 20.0 ) {
     v_GoC = epas ;
     }
   i_ampa = g_ampa * ( e_ampa - v_GoC ) ;
   i_gaba = g_gaba * ( e_gaba - v_GoC ) ;
   }
}}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(v_GoC) - _p;  _dlist1[0] = &(Dv_GoC) - _p;
 _slist1[1] = &(g_ampa) - _p;  _dlist1[1] = &(Dg_ampa) - _p;
 _slist1[2] = &(g_gaba) - _p;  _dlist1[2] = &(Dg_gaba) - _p;
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif

#if NMODL_TEXT
static const char* nmodl_filename = "grl_goc.mod";
static const char* nmodl_file_text = 
  "TITLE Golgi cell in the granular layer (GrL)\n"
  "COMMENT\n"
  "    Modified from Garrido et al, 2013.\n"
  "ENDCOMMENT \n"
  "\n"
  "NEURON {\n"
  "	POINT_PROCESS GoC\n"
  "	RANGE v_GoC, g_ampa, tau_ampa, e_ampa, i_ampa, g_gaba, tau_gaba, e_gaba, i_gaba\n"
  "}\n"
  "\n"
  "UNITS {\n"
  "	(nA) = (nanoamp)\n"
  "	(mV) = (millivolt)\n"
  "	(uS) = (microsiemens)\n"
  "}\n"
  "\n"
  "PARAMETER {\n"
  "	Cm = 50 (pF)\n"
  "	epas = -65 (mV)\n"
  "	Grest = 3 (nS)\n"
  "	\n"
  "	e_ampa = 0	(mV)\n"
  "	tau_ampa = 0.5 (ms)\n"
  "	\n"
  "	e_gaba = -65 (mV)\n"
  "	tau_gaba = 10 (ms)\n"
  "}\n"
  "\n"
  "ASSIGNED {\n"
  "	i_ampa (nA)\n"
  "	i_gaba (nA)\n"
  "}\n"
  "\n"
  "STATE {\n"
  "	v_GoC (mV)\n"
  "	g_ampa (uS)\n"
  "	g_gaba (uS)\n"
  "}\n"
  "\n"
  "INITIAL {\n"
  "	v_GoC = epas\n"
  "	g_ampa=0\n"
  "	g_gaba=0\n"
  "}\n"
  "\n"
  "BREAKPOINT {\n"
  "	SOLVE state METHOD cnexp\n"
  "	if (v_GoC>10 && v_GoC<20) {\n"
  "		v_GoC = epas\n"
  "		}\n"
  "	i_ampa = g_ampa*(e_ampa - v_GoC)\n"
  "	i_gaba = g_gaba*(e_gaba - v_GoC)\n"
  "}\n"
  "\n"
  "DERIVATIVE state {\n"
  "	v_GoC' = (i_ampa + i_gaba + Grest*(epas - v_GoC))/Cm\n"
  "	g_ampa' = -g_ampa/tau_ampa\n"
  "	g_gaba' = -g_gaba/tau_gaba\n"
  "}\n"
  "\n"
  "NET_RECEIVE(weight (uS)) {\n"
  "	if (weight>=15) {\n"
  "		g_ampa = g_ampa + weight\n"
  "	}\n"
  "	if (weight>=1 && weight<=15) {\n"
  "		g_gaba = g_gaba + weight\n"
  "	}\n"
  "	: Spike detection; spike if membrane potential>-50 mV and given enough input\n"
  "	if (weight>=0.01 && weight<=0.03 && v_GoC>-50) {\n"
  "		v_GoC = 20\n"
  "		net_event(t) : Release a spike\n"
  "		g_ampa=0\n"
  "		g_gaba=0\n"
  "	}\n"
  "}\n"
  ;
#endif