/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__GrC
#define _nrn_initial _nrn_initial__GrC
#define nrn_cur _nrn_cur__GrC
#define _nrn_current _nrn_current__GrC
#define nrn_jacob _nrn_jacob__GrC
#define nrn_state _nrn_state__GrC
#define _net_receive _net_receive__GrC
#define state state__GrC
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define e_ampa _p[0]
#define tau_ampa _p[1]
#define e_nmda _p[2]
#define tau_nmda _p[3]
#define e_gaba _p[4]
#define tau_gaba _p[5]
#define i_ampa _p[6]
#define i_nmda _p[7]
#define i_gaba _p[8]
#define v_GrC _p[9]
#define g_ampa _p[10]
#define g_nmda _p[11]
#define g_gaba _p[12]
#define Dv_GrC _p[13]
#define Dg_ampa _p[14]
#define Dg_nmda _p[15]
#define Dg_gaba _p[16]
#define v _p[17]
#define _g _p[18]
#define _tsav _p[19]
#define _nd_area *_ppvar[0]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
0, 0
};
/* declare global and static user variables */
#define Cm Cm_GrC
double Cm = 2;
#define Grest Grest_GrC
double Grest = 0.2;
#define MgC MgC_GrC
double MgC = 1.2;
#define alp alp_GrC
double alp = 0.062;
#define bet bet_GrC
double bet = 3.57;
#define epas epas_GrC
double epas = -65;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"Cm_GrC", "pF",
"epas_GrC", "mV",
"Grest_GrC", "nS",
"alp_GrC", "1/mV",
"bet_GrC", "mM",
"MgC_GrC", "mM",
"e_ampa", "mV",
"tau_ampa", "ms",
"e_nmda", "mV",
"tau_nmda", "ms",
"e_gaba", "mV",
"tau_gaba", "ms",
"v_GrC", "mV",
"g_ampa", "uS",
"g_nmda", "uS",
"g_gaba", "uS",
"i_ampa", "nA",
"i_nmda", "nA",
"i_gaba", "nA",
0,0
};
static double delta_t = 0.01;
static double g_gaba0 = 0;
static double g_nmda0 = 0;
static double g_ampa0 = 0;
static double v_GrC0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"Cm_GrC", &Cm_GrC,
"epas_GrC", &epas_GrC,
"Grest_GrC", &Grest_GrC,
"alp_GrC", &alp_GrC,
"bet_GrC", &bet_GrC,
"MgC_GrC", &MgC_GrC,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[2]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"GrC",
"e_ampa",
"tau_ampa",
"e_nmda",
"tau_nmda",
"e_gaba",
"tau_gaba",
0,
"i_ampa",
"i_nmda",
"i_gaba",
0,
"v_GrC",
"g_ampa",
"g_nmda",
"g_gaba",
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 20, _prop);
/*initialize range parameters*/
e_ampa = 0;
tau_ampa = 0.5;
e_nmda = 0;
tau_nmda = 40;
e_gaba = -65;
tau_gaba = 10;
}
_prop->param = _p;
_prop->param_size = 20;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _net_receive(Point_process*, double*, double);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _grl_grc_reg() {
int _vectorized = 1;
_initlists();
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 1,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 20, 3);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_dparam_semantics(_mechtype, 2, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
add_nrn_has_net_event(_mechtype);
pnt_receive[_mechtype] = _net_receive;
pnt_receive_size[_mechtype] = 1;
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 GrC D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/grl_grc.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Granule cell in the granular layer (GrL)";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[4], _dlist1[4];
static int state(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
Dv_GrC = ( i_ampa + i_nmda + i_gaba + Grest * ( epas - v_GrC ) ) / Cm ;
Dg_ampa = - g_ampa / tau_ampa ;
Dg_nmda = - g_nmda / tau_nmda ;
Dg_gaba = - g_gaba / tau_gaba ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
Dv_GrC = Dv_GrC / (1. - dt*( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm )) ;
Dg_ampa = Dg_ampa / (1. - dt*( ( - 1.0 ) / tau_ampa )) ;
Dg_nmda = Dg_nmda / (1. - dt*( ( - 1.0 ) / tau_nmda )) ;
Dg_gaba = Dg_gaba / (1. - dt*( ( - 1.0 ) / tau_gaba )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
v_GrC = v_GrC + (1. - exp(dt*(( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm)))*(- ( ( ( i_ampa + i_nmda + i_gaba + ( Grest )*( ( epas ) ) ) ) / Cm ) / ( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm ) - v_GrC) ;
g_ampa = g_ampa + (1. - exp(dt*(( - 1.0 ) / tau_ampa)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_ampa ) - g_ampa) ;
g_nmda = g_nmda + (1. - exp(dt*(( - 1.0 ) / tau_nmda)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_nmda ) - g_nmda) ;
g_gaba = g_gaba + (1. - exp(dt*(( - 1.0 ) / tau_gaba)))*(- ( 0.0 ) / ( ( - 1.0 ) / tau_gaba ) - g_gaba) ;
}
return 0;
}
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag;
{ double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt; _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
_tsav = t; {
if ( _args[0] >= 1.0 && _args[0] <= 5.0 ) {
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = g_ampa;
double __primary = (g_ampa + _args[0]) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_ampa ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_ampa ) - __primary );
g_ampa += __primary;
} else {
g_ampa = g_ampa + _args[0] ;
}
}
if ( _args[0] >= 0.1 && _args[0] <= 0.8 ) {
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = g_nmda;
double __primary = (g_nmda + 0.087 * 4.0) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_nmda ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_nmda ) - __primary );
g_nmda += __primary;
} else {
g_nmda = g_nmda + 0.087 * 4.0 ;
}
}
if ( _args[0] >= 5.0 ) {
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = g_gaba;
double __primary = (g_gaba + _args[0]) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_gaba ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_gaba ) - __primary );
g_gaba += __primary;
} else {
g_gaba = g_gaba + _args[0] ;
}
}
if ( _args[0] >= 0.01 && _args[0] <= 0.03 && v_GrC > - 40.0 ) {
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = v_GrC;
double __primary = (20.0) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm ) ) )*( - ( ( ( i_ampa + i_nmda + i_gaba + ( Grest )*( ( epas ) ) ) ) / Cm ) / ( ( ( ( Grest )*( ( ( - 1.0 ) ) ) ) ) / Cm ) - __primary );
v_GrC += __primary;
} else {
v_GrC = 20.0 ;
}
net_event ( _pnt, t ) ;
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = g_ampa;
double __primary = (0.0) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_ampa ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_ampa ) - __primary );
g_ampa += __primary;
} else {
g_ampa = 0.0 ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = g_nmda;
double __primary = (0.0) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_nmda ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_nmda ) - __primary );
g_nmda += __primary;
} else {
g_nmda = 0.0 ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = g_gaba;
double __primary = (0.0) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tau_gaba ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tau_gaba ) - __primary );
g_gaba += __primary;
} else {
g_gaba = 0.0 ;
}
}
} }
static int _ode_count(int _type){ return 4;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 4; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
g_gaba = g_gaba0;
g_nmda = g_nmda0;
g_ampa = g_ampa0;
v_GrC = v_GrC0;
{
v_GrC = epas ;
g_ampa = 0.0 ;
g_nmda = 0.0 ;
g_gaba = 0.0 ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_tsav = -1e20;
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ state(_p, _ppvar, _thread, _nt);
} {
if ( v_GrC > 10.0 && v_GrC < 20.0 ) {
v_GrC = epas ;
}
i_ampa = g_ampa * ( e_ampa - v_GrC ) ;
i_nmda = g_nmda * ( e_nmda - v_GrC ) / ( 1.0 + exp ( - alp * v_GrC * MgC / bet ) ) ;
i_gaba = g_gaba * ( e_gaba - v_GrC ) ;
}
}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(v_GrC) - _p; _dlist1[0] = &(Dv_GrC) - _p;
_slist1[1] = &(g_ampa) - _p; _dlist1[1] = &(Dg_ampa) - _p;
_slist1[2] = &(g_nmda) - _p; _dlist1[2] = &(Dg_nmda) - _p;
_slist1[3] = &(g_gaba) - _p; _dlist1[3] = &(Dg_gaba) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "grl_grc.mod";
static const char* nmodl_file_text =
"TITLE Granule cell in the granular layer (GrL)\n"
"COMMENT\n"
" Modified from Garrido et al, 2013.\n"
"ENDCOMMENT \n"
"\n"
"NEURON {\n"
" POINT_PROCESS GrC\n"
" RANGE v_GrC, g_ampa, tau_ampa, e_ampa, i_ampa, g_nmda, tau_nmda, e_nmda, i_nmda, g_gaba, tau_gaba, e_gaba, i_gaba\n"
"}\n"
"\n"
"UNITS {\n"
" (nA) = (nanoamp)\n"
" (mV) = (millivolt)\n"
" (uS) = (microsiemens)\n"
"}\n"
"\n"
"PARAMETER {\n"
" Cm = 2 (pF)\n"
" epas = -65 (mV)\n"
" Grest = 0.2 (nS)\n"
" \n"
" e_ampa = 0 (mV)\n"
" tau_ampa = 0.5 (ms)\n"
" \n"
" e_nmda = 0 (mV)\n"
" tau_nmda = 40 (ms)\n"
" alp = 62e-3 (1/mV)\n"
" bet = 3.57 (mM)\n"
" MgC = 1.2 (mM)\n"
" \n"
" e_gaba = -65 (mV)\n"
" tau_gaba = 10 (ms)\n"
"}\n"
"\n"
"ASSIGNED {\n"
" i_ampa (nA)\n"
" i_nmda (nA)\n"
" i_gaba (nA)\n"
"}\n"
"\n"
"STATE {\n"
" v_GrC (mV)\n"
" g_ampa (uS)\n"
" g_nmda (uS)\n"
" g_gaba (uS)\n"
"}\n"
"\n"
"INITIAL {\n"
" v_GrC = epas\n"
" g_ampa=0\n"
" g_nmda=0\n"
" g_gaba=0\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE state METHOD cnexp\n"
" if (v_GrC>10 && v_GrC<20) {\n"
" v_GrC = epas\n"
" }\n"
" i_ampa = g_ampa*(e_ampa - v_GrC)\n"
" i_nmda = g_nmda*(e_nmda - v_GrC)/(1+exp(-alp*v_GrC*MgC/bet))\n"
" i_gaba = g_gaba*(e_gaba - v_GrC)\n"
"}\n"
"\n"
"DERIVATIVE state {\n"
" v_GrC' = (i_ampa + i_nmda + i_gaba + Grest*(epas - v_GrC))/Cm\n"
" g_ampa' = -g_ampa/tau_ampa\n"
" g_nmda' = -g_nmda/tau_nmda\n"
" g_gaba' = -g_gaba/tau_gaba\n"
"}\n"
"\n"
"NET_RECEIVE(weight (uS)) {\n"
" if (weight>=1 && weight<=5) {\n"
" g_ampa = g_ampa + weight\n"
" }\n"
" if (weight>=0.1 && weight<=0.8) {\n"
" g_nmda = g_nmda + 0.087*4\n"
" }\n"
" if (weight>=5) {\n"
" g_gaba = g_gaba + weight\n"
" }\n"
" : Spike detection; spike if membrane potential>-40 mV and given enough input\n"
" if (weight>=0.01 && weight<=0.03 && v_GrC>-40) {\n"
" v_GrC = 20\n"
" net_event(t) : Release a spike\n"
" g_ampa=0\n"
" g_nmda=0\n"
" g_gaba=0\n"
" }\n"
"}\n"
;
#endif