/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__mcCad
#define _nrn_initial _nrn_initial__mcCad
#define nrn_cur _nrn_cur__mcCad
#define _nrn_current _nrn_current__mcCad
#define nrn_jacob _nrn_jacob__mcCad
#define nrn_state _nrn_state__mcCad
#define _net_receive _net_receive__mcCad
#define state state__mcCad
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define depth _p[0]
#define taur _p[1]
#define cainf _p[2]
#define kt _p[3]
#define kd _p[4]
#define cai _p[5]
#define Dcai _p[6]
#define ica _p[7]
#define drive_channel _p[8]
#define v _p[9]
#define _g _p[10]
#define _ion_ica *_ppvar[0]._pval
#define _ion_cai *_ppvar[1]._pval
#define _style_ca *((int*)_ppvar[2]._pvoid)
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_mcCad", _hoc_setdata,
0, 0
};
/* declare global and static user variables */
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"depth_mcCad", "um",
"taur_mcCad", "ms",
"cainf_mcCad", "mM",
"kt_mcCad", "mM/ms",
"kd_mcCad", "mM",
0,0
};
static double cai0 = 0;
static double delta_t = 1;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"mcCad",
"depth_mcCad",
"taur_mcCad",
"cainf_mcCad",
"kt_mcCad",
"kd_mcCad",
0,
0,
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 11, _prop);
/*initialize range parameters*/
depth = 1;
taur = 5;
cainf = 0.00024;
kt = 0;
kd = 0;
_prop->param = _p;
_prop->param_size = 11;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_check_conc_write(_prop, prop_ion, 1);
nrn_promote(prop_ion, 3, 0);
_ppvar[0]._pval = &prop_ion->param[3]; /* ica */
_ppvar[1]._pval = &prop_ion->param[1]; /* cai */
_ppvar[2]._pvoid = (void*)(&(prop_ion->dparam[0]._i)); /* iontype for ca */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _thread_mem_init(Datum*);
static void _thread_cleanup(Datum*);
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _mc_Cad_reg() {
int _vectorized = 1;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 5);
_extcall_thread = (Datum*)ecalloc(4, sizeof(Datum));
_thread_mem_init(_extcall_thread);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 1, _thread_mem_init);
_nrn_thread_reg(_mechtype, 0, _thread_cleanup);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 11, 4);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "#ca_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
nrn_writes_conc(_mechtype, 0);
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 mcCad D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/mc_Cad.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double FARADAY = 96489;
static int _reset;
static char *modelname = "Fast mechanism for submembranal Ca++ concentration (cai)";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
#define _deriv1_advance _thread[0]._i
#define _dith1 1
#define _recurse _thread[2]._i
#define _newtonspace1 _thread[3]._pvoid
extern void* nrn_cons_newtonspace(int);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist2[1];
static int _slist1[1], _dlist1[1];
static int state(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
drive_channel = - ( 10000.0 ) * ica / ( 2.0 * FARADAY * depth ) ;
if ( drive_channel <= 0. ) {
drive_channel = 0. ;
}
Dcai = drive_channel + ( cainf - cai ) / taur ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
drive_channel = - ( 10000.0 ) * ica / ( 2.0 * FARADAY * depth ) ;
if ( drive_channel <= 0. ) {
drive_channel = 0. ;
}
Dcai = Dcai / (1. - dt*( ( ( ( - 1.0 ) ) ) / taur )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset=0; int error = 0;
{ double* _savstate1 = _thread[_dith1]._pval;
double* _dlist2 = _thread[_dith1]._pval + 1;
int _counte = -1;
if (!_recurse) {
_recurse = 1;
{int _id; for(_id=0; _id < 1; _id++) { _savstate1[_id] = _p[_slist1[_id]];}}
error = nrn_newton_thread(_newtonspace1, 1,_slist2, _p, state, _dlist2, _ppvar, _thread, _nt);
_recurse = 0; if(error) {abort_run(error);}}
{
drive_channel = - ( 10000.0 ) * ica / ( 2.0 * FARADAY * depth ) ;
if ( drive_channel <= 0. ) {
drive_channel = 0. ;
}
Dcai = drive_channel + ( cainf - cai ) / taur ;
{int _id; for(_id=0; _id < 1; _id++) {
if (_deriv1_advance) {
_dlist2[++_counte] = _p[_dlist1[_id]] - (_p[_slist1[_id]] - _savstate1[_id])/dt;
}else{
_dlist2[++_counte] = _p[_slist1[_id]] - _savstate1[_id];}}}
} }
return _reset;}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ica = _ion_ica;
cai = _ion_cai;
cai = _ion_cai;
_ode_spec1 (_p, _ppvar, _thread, _nt);
_ion_cai = cai;
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
_pv[0] = &(_ion_cai);
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ica = _ion_ica;
cai = _ion_cai;
cai = _ion_cai;
_ode_matsol_instance1(_threadargs_);
}}
static void _thread_mem_init(Datum* _thread) {
_thread[_dith1]._pval = (double*)ecalloc(2, sizeof(double));
_newtonspace1 = nrn_cons_newtonspace(1);
}
static void _thread_cleanup(Datum* _thread) {
free((void*)(_thread[_dith1]._pval));
nrn_destroy_newtonspace(_newtonspace1);
}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 1);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
{
cai = cainf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ica = _ion_ica;
cai = _ion_cai;
cai = _ion_cai;
initmodel(_p, _ppvar, _thread, _nt);
_ion_cai = cai;
nrn_wrote_conc(_ca_sym, (&(_ion_cai)) - 1, _style_ca);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
double _dtsav = dt;
if (secondorder) { dt *= 0.5; }
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ica = _ion_ica;
cai = _ion_cai;
cai = _ion_cai;
{ _deriv1_advance = 1;
derivimplicit_thread(1, _slist1, _dlist1, _p, state, _ppvar, _thread, _nt);
_deriv1_advance = 0;
if (secondorder) {
int _i;
for (_i = 0; _i < 1; ++_i) {
_p[_slist1[_i]] += dt*_p[_dlist1[_i]];
}}
} {
}
_ion_cai = cai;
}}
dt = _dtsav;
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(cai) - _p; _dlist1[0] = &(Dcai) - _p;
_slist2[0] = &(cai) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "mc_Cad.mod";
static const char* nmodl_file_text =
"TITLE Fast mechanism for submembranal Ca++ concentration (cai)\n"
"\n"
"COMMENT\n"
" Takes into account:\n"
" - increase of cai due to calcium currents\n"
" - extrusion of calcium with a simple first order equation\n"
" \n"
" This mechanism is compatible with the calcium pump \"cad\" and has the \n"
" same name and parameters; however the parameters specific to the pump\n"
" are dummy here.\n"
" \n"
" Parameters:\n"
" - depth: depth of the shell just beneath the membran (in um)\n"
" - cainf: equilibrium concentration of calcium (2e-4 mM)\n"
" - taur: time constant of calcium extrusion (must be fast)\n"
" - kt,kd: dummy parameters\n"
" \n"
" Written by Alain Destexhe, Salk Institute, 1995\n"
"ENDCOMMENT\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX mcCad\n"
" USEION ca READ ica, cai WRITE cai\n"
" RANGE depth,kt,kd,cainf,taur\n"
"}\n"
"\n"
"UNITS {\n"
" (molar) = (1/liter) : moles do not appear in units\n"
" (mM) = (millimolar)\n"
" (um) = (micron)\n"
" (mA) = (milliamp)\n"
" (msM) = (ms mM)\n"
"}\n"
"\n"
"CONSTANT {\n"
" FARADAY = 96489 (coul) : moles do not appear in units\n"
": FARADAY = 96.489 (k-coul) : moles do not appear in units\n"
"}\n"
"\n"
"PARAMETER {\n"
" depth = 1 (um) : depth of shell\n"
" taur = 5 (ms) : rate of calcium removal\n"
" cainf = 2.4e-4 (mM)\n"
" kt = 0 (mM/ms) : dummy\n"
" kd = 0 (mM) : dummy\n"
"}\n"
"\n"
"STATE {\n"
" cai (mM) \n"
"}\n"
"\n"
"INITIAL {\n"
" cai = cainf\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ica (mA/cm2)\n"
" drive_channel (mM/ms)\n"
"}\n"
" \n"
"BREAKPOINT {\n"
" SOLVE state METHOD derivimplicit\n"
"}\n"
"\n"
"DERIVATIVE state { \n"
"\n"
" drive_channel = - (10000) * ica / (2 * FARADAY * depth)\n"
"\n"
" if (drive_channel <= 0.) { drive_channel = 0. } : cannot pump inward\n"
"\n"
" cai' = drive_channel + (cainf-cai)/taur\n"
"}\n"
"\n"
;
#endif