/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__mcIm
#define _nrn_initial _nrn_initial__mcIm
#define nrn_cur _nrn_cur__mcIm
#define _nrn_current _nrn_current__mcIm
#define nrn_jacob _nrn_jacob__mcIm
#define nrn_state _nrn_state__mcIm
#define _net_receive _net_receive__mcIm
#define evaluate_fct evaluate_fct__mcIm
#define states states__mcIm
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gkbar _p[0]
#define m_inf _p[1]
#define tau_m _p[2]
#define m _p[3]
#define ek _p[4]
#define Dm _p[5]
#define ik _p[6]
#define tau_peak _p[7]
#define tadj _p[8]
#define v _p[9]
#define _g _p[10]
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_exptable(void);
static void _hoc_evaluate_fct(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_mcIm", _hoc_setdata,
"exptable_mcIm", _hoc_exptable,
"evaluate_fct_mcIm", _hoc_evaluate_fct,
0, 0
};
#define _f_exptable _f_exptable_mcIm
#define exptable exptable_mcIm
extern double _f_exptable( _threadargsprotocomma_ double );
extern double exptable( _threadargsprotocomma_ double );
static void _check_exptable(double*, Datum*, Datum*, _NrnThread*);
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
_check_exptable(_p, _ppvar, _thread, _nt);
}
/* declare global and static user variables */
#define taumax taumax_mcIm
double taumax = 1000;
#define usetable usetable_mcIm
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_mcIm", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"taumax_mcIm", "ms",
"gkbar_mcIm", "mho/cm2",
"tau_m_mcIm", "ms",
0,0
};
static double delta_t = 1;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"taumax_mcIm", &taumax_mcIm,
"usetable_mcIm", &usetable_mcIm,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"mcIm",
"gkbar_mcIm",
0,
"m_inf_mcIm",
"tau_m_mcIm",
0,
"m_mcIm",
0,
0};
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 11, _prop);
/*initialize range parameters*/
gkbar = 1e-006;
_prop->param = _p;
_prop->param_size = 11;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _mc_IM_reg() {
int _vectorized = 1;
_initlists();
ion_reg("k", -10000.);
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
_nrn_thread_table_reg(_mechtype, _check_table_thread);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 11, 4);
hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 mcIm D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/mc_IM.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double *_t_exptable;
static int _reset;
static char *modelname = "Cortical M current";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static double _n_exptable(_threadargsprotocomma_ double _lv);
static int _slist1[1], _dlist1[1];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
evaluate_fct ( _threadargscomma_ v ) ;
Dm = ( m_inf - m ) / tau_m ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
evaluate_fct ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
evaluate_fct ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ;
}
return 0;
}
static int evaluate_fct ( _threadargsprotocomma_ double _lv ) {
m_inf = 1.0 / ( 1.0 + exptable ( _threadargscomma_ - ( _lv + 35.0 ) / 10.0 ) ) ;
tau_m = tau_peak / ( 3.3 * exptable ( _threadargscomma_ ( _lv + 35.0 ) / 20.0 ) + exptable ( _threadargscomma_ - ( _lv + 35.0 ) / 20.0 ) ) ;
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static double _mfac_exptable, _tmin_exptable;
static void _check_exptable(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
if (!usetable) {return;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_exptable = - 25.0 ;
_tmax = 25.0 ;
_dx = (_tmax - _tmin_exptable)/10000.; _mfac_exptable = 1./_dx;
for (_i=0, _x=_tmin_exptable; _i < 10001; _x += _dx, _i++) {
_t_exptable[_i] = _f_exptable(_p, _ppvar, _thread, _nt, _x);
}
}
}
double exptable(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lx) {
#if 0
_check_exptable(_p, _ppvar, _thread, _nt);
#endif
return _n_exptable(_p, _ppvar, _thread, _nt, _lx);
}
static double _n_exptable(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lx){ int _i, _j;
double _xi, _theta;
if (!usetable) {
return _f_exptable(_p, _ppvar, _thread, _nt, _lx);
}
_xi = _mfac_exptable * (_lx - _tmin_exptable);
if (isnan(_xi)) {
return _xi; }
if (_xi <= 0.) {
return _t_exptable[0];
}
if (_xi >= 10000.) {
return _t_exptable[10000];
}
_i = (int) _xi;
return _t_exptable[_i] + (_xi - (double)_i)*(_t_exptable[_i+1] - _t_exptable[_i]);
}
double _f_exptable ( _threadargsprotocomma_ double _lx ) {
double _lexptable;
if ( ( _lx > - 25.0 ) && ( _lx < 25.0 ) ) {
_lexptable = exp ( _lx ) ;
}
else {
_lexptable = 0. ;
}
return _lexptable;
}
static void _hoc_exptable(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
#if 1
_check_exptable(_p, _ppvar, _thread, _nt);
#endif
_r = exptable ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
m = m0;
{
evaluate_fct ( _threadargscomma_ v ) ;
m = 0.0 ;
tadj = pow( 2.3 , ( ( celsius - 36.0 ) / 10.0 ) ) ;
tau_peak = taumax / tadj ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if 0
_check_exptable(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
ik = gkbar * m * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ek = _ion_ek;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_t_exptable = makevector(10001*sizeof(double));
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "mc_IM.mod";
static const char* nmodl_file_text =
"TITLE Cortical M current\n"
"\n"
"COMMENT\n"
" M-current, responsible for the adaptation of firing rate and the \n"
" afterhyperpolarization (AHP) of cortical pyramidal cells\n"
" \n"
" First-order model described by hodgkin-Hyxley like equations.\n"
" K+ current, activated by depolarization, noninactivating.\n"
"\n"
" Model taken from Yamada, W.M., Koch, C. and Adams, P.R. Multiple \n"
" channels and calcium dynamics. In: Methods in Neuronal Modeling, \n"
" edited by C. Koch and I. Segev, MIT press, 1989, p 97-134.\n"
" \n"
" See also: McCormick, D.A., Wang, Z. and Huguenard, J. Neurotransmitter \n"
" control of neocortical neuronal activity and excitability. \n"
" Cerebral Cortex 3: 387-398, 1993.\n"
" \n"
" Written by Alain Destexhe, Laval University, 1995\n"
"ENDCOMMENT\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX mcIm\n"
" USEION k READ ek WRITE ik\n"
" RANGE gkbar, m_inf, tau_m\n"
" GLOBAL taumax\n"
"\n"
"}\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
"}\n"
"\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius = 36 (degC)\n"
" ek (mV)\n"
" gkbar = 1e-6 (mho/cm2)\n"
" taumax = 1000 (ms) : peak value of tau\n"
"}\n"
"\n"
"\n"
"\n"
"STATE {\n"
" m\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ik (mA/cm2)\n"
" m_inf\n"
" tau_m (ms)\n"
" tau_peak (ms)\n"
" tadj\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" ik = gkbar * m * (v - ek)\n"
"}\n"
"\n"
"DERIVATIVE states { \n"
" evaluate_fct(v)\n"
"\n"
" m' = (m_inf - m) / tau_m\n"
"}\n"
"\n"
"UNITSOFF\n"
"INITIAL {\n"
" evaluate_fct(v)\n"
" m = 0\n"
":\n"
": The Q10 value is assumed to be 2.3\n"
":\n"
" tadj = 2.3 ^ ((celsius-36)/10)\n"
" tau_peak = taumax / tadj\n"
"}\n"
"\n"
"PROCEDURE evaluate_fct(v(mV)) {\n"
"\n"
" m_inf = 1 / ( 1 + exptable(-(v+35)/10) )\n"
" tau_m = tau_peak / ( 3.3 * exptable((v+35)/20) + exptable(-(v+35)/20) )\n"
"}\n"
"UNITSON\n"
"\n"
"\n"
"FUNCTION exptable(x) { \n"
" TABLE FROM -25 TO 25 WITH 10000\n"
"\n"
" if ((x > -25) && (x < 25)) {\n"
" exptable = exp(x)\n"
" } else {\n"
" exptable = 0.\n"
" }\n"
"}\n"
;
#endif