/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__mcIt
#define _nrn_initial _nrn_initial__mcIt
#define nrn_cur _nrn_cur__mcIt
#define _nrn_current _nrn_current__mcIt
#define nrn_jacob _nrn_jacob__mcIt
#define nrn_state _nrn_state__mcIt
#define _net_receive _net_receive__mcIt
#define castate castate__mcIt
#define evaluate_fct evaluate_fct__mcIt
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gcabar _p[0]
#define shift _p[1]
#define m_inf _p[2]
#define tau_m _p[3]
#define h_inf _p[4]
#define tau_h _p[5]
#define h _p[6]
#define cai _p[7]
#define cao _p[8]
#define Dh _p[9]
#define ica _p[10]
#define carev _p[11]
#define phi_h _p[12]
#define v _p[13]
#define _g _p[14]
#define _ion_cai *_ppvar[0]._pval
#define _ion_cao *_ppvar[1]._pval
#define _ion_ica *_ppvar[2]._pval
#define _ion_dicadv *_ppvar[3]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_evaluate_fct(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_mcIt", _hoc_setdata,
"evaluate_fct_mcIt", _hoc_evaluate_fct,
0, 0
};
/* declare global and static user variables */
#define q10 q10_mcIt
double q10 = 3;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"gcabar_mcIt", "mho/cm2",
"shift_mcIt", "mV",
"tau_m_mcIt", "ms",
"tau_h_mcIt", "ms",
0,0
};
static double delta_t = 1;
static double h0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"q10_mcIt", &q10_mcIt,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[4]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"mcIt",
"gcabar_mcIt",
"shift_mcIt",
0,
"m_inf_mcIt",
"tau_m_mcIt",
"h_inf_mcIt",
"tau_h_mcIt",
0,
"h_mcIt",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 15, _prop);
/*initialize range parameters*/
gcabar = 0.002;
shift = 2;
_prop->param = _p;
_prop->param_size = 15;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
_ppvar[1]._pval = &prop_ion->param[2]; /* cao */
_ppvar[2]._pval = &prop_ion->param[3]; /* ica */
_ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _mc_IT_reg() {
int _vectorized = 1;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 15, 5);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 mcIt D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/mc_IT.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double FARADAY = 96485.3;
static double R = 8.3145;
static int _reset;
static char *modelname = "Low threshold calcium current";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[1], _dlist1[1];
static int castate(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
evaluate_fct ( _threadargscomma_ v ) ;
Dh = ( h_inf - h ) / tau_h ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
evaluate_fct ( _threadargscomma_ v ) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_h )) ;
return 0;
}
/*END CVODE*/
static int castate (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
evaluate_fct ( _threadargscomma_ v ) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ;
}
return 0;
}
static int evaluate_fct ( _threadargsprotocomma_ double _lv ) {
double _lVm ;
_lVm = _lv + shift ;
m_inf = 1.0 / ( 1.0 + exp ( - ( _lVm + 57.0 ) / 6.2 ) ) ;
h_inf = 1.0 / ( 1.0 + exp ( ( _lVm + 81.0 ) / 4.0 ) ) ;
tau_h = 30.8 + ( 211.4 + exp ( ( _lVm + 113.2 ) / 5.0 ) ) / ( 1.0 + exp ( ( _lVm + 84.0 ) / 3.2 ) ) ;
tau_h = tau_h / phi_h ;
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 2);
nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
h = h0;
{
h = 0.0 ;
phi_h = pow( q10 , ( ( celsius - 24.0 ) / 10.0 ) ) ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
cao = _ion_cao;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
carev = ( 1e3 ) * ( R * ( celsius + 273.15 ) ) / ( 2.0 * FARADAY ) * log ( cao / cai ) ;
ica = gcabar * m_inf * m_inf * h * ( v - carev ) ;
}
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
cao = _ion_cao;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
cao = _ion_cao;
{ castate(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(h) - _p; _dlist1[0] = &(Dh) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "mc_IT.mod";
static const char* nmodl_file_text =
"TITLE Low threshold calcium current\n"
"\n"
"COMMENT\n"
" Ca++ current responsible for low threshold spikes (LTS)\n"
" THALAMOCORTICAL CELLS\n"
" Differential equations\n"
"\n"
" Model based on the data of Huguenard & McCormick, J Neurophysiol\n"
" 68: 1373-1383, 1992 and Huguenard & Prince, J Neurosci.\n"
" 12: 3804-3817, 1992.\n"
"\n"
" Features:\n"
"\n"
" - kinetics described by Nernst equations using a m2h format\n"
" - activation considered at steady-state\n"
" - inactivation fit to Huguenard's data using a bi-exp function\n"
" - shift for screening charge, q10 of inactivation of 3\n"
" \n"
" Written by Alain Destexhe, Salk Institute, 1993; modified 1995\n"
"ENDCOMMENT\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX mcIt\n"
" USEION ca READ cai,cao WRITE ica\n"
" GLOBAL q10\n"
" RANGE gcabar, m_inf, tau_m, h_inf, tau_h, shift\n"
"}\n"
"\n"
"UNITS {\n"
" (molar) = (1/liter)\n"
" (mV) = (millivolt)\n"
" (mA) = (milliamp)\n"
" (mM) = (millimolar)\n"
"\n"
" FARADAY = (faraday) (coulomb)\n"
" R = (k-mole) (joule/degC)\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius = 36 (degC)\n"
" gcabar = 0.002 (mho/cm2)\n"
" q10 = 3 : Q10 of inactivation\n"
" shift = 2 (mV) : corresponds to 2mM ext Ca++\n"
" cai = 2.4e-4 (mM) : adjusted for eca=120 mV\n"
" cao = 2 (mM)\n"
"}\n"
"\n"
"STATE {\n"
" h\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ica (mA/cm2)\n"
" carev (mV)\n"
" m_inf\n"
" tau_m (ms) : dummy variable for compatibility\n"
" h_inf\n"
" tau_h (ms)\n"
" phi_h\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE castate METHOD cnexp\n"
" carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)\n"
" ica = gcabar * m_inf * m_inf * h * (v-carev)\n"
"}\n"
"\n"
"DERIVATIVE castate {\n"
" evaluate_fct(v)\n"
"\n"
" h' = (h_inf - h) / tau_h\n"
"}\n"
"\n"
"\n"
"UNITSOFF\n"
"INITIAL {\n"
" h = 0\n"
"\n"
":\n"
": Transformation to 36 deg assuming Q10 of 3 for h\n"
": (as in Coulter et al., J Physiol 414: 587, 1989)\n"
":\n"
" phi_h = q10 ^ ((celsius-24 (degC) )/10 (degC) )\n"
"}\n"
"\n"
"PROCEDURE evaluate_fct(v(mV)) { LOCAL Vm\n"
"\n"
" Vm = v + shift\n"
"\n"
" m_inf = 1.0 / ( 1 + exp(-(Vm+57)/6.2) )\n"
" h_inf = 1.0 / ( 1 + exp((Vm+81)/4.0) )\n"
"\n"
": if(Vm < -80) {\n"
": tau_h = exp((Vm+467)/66.6) / phi_h\n"
": } else {\n"
": tau_h = ( 28 + exp(-(Vm+22)/10.5) ) / phi_h\n"
": }\n"
"\n"
" tau_h = 30.8 + (211.4 + exp((Vm+113.2)/5)) / (1 + exp((Vm+84)/3.2))\n"
"\n"
" tau_h = tau_h / phi_h\n"
"\n"
"}\n"
"\n"
"UNITSON\n"
;
#endif