/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__mchh2
#define _nrn_initial _nrn_initial__mchh2
#define nrn_cur _nrn_cur__mchh2
#define _nrn_current _nrn_current__mchh2
#define nrn_jacob _nrn_jacob__mchh2
#define nrn_state _nrn_state__mchh2
#define _net_receive _net_receive__mchh2
#define evaluate_fct evaluate_fct__mchh2
#define states states__mchh2
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gnabar _p[0]
#define gkbar _p[1]
#define vtraub _p[2]
#define m_inf _p[3]
#define h_inf _p[4]
#define n_inf _p[5]
#define tau_m _p[6]
#define tau_h _p[7]
#define tau_n _p[8]
#define m_exp _p[9]
#define h_exp _p[10]
#define n_exp _p[11]
#define m _p[12]
#define h _p[13]
#define n _p[14]
#define ena _p[15]
#define ek _p[16]
#define Dm _p[17]
#define Dh _p[18]
#define Dn _p[19]
#define ina _p[20]
#define ik _p[21]
#define il _p[22]
#define tadj _p[23]
#define _g _p[24]
#define _ion_ena *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#define _ion_ek *_ppvar[3]._pval
#define _ion_ik *_ppvar[4]._pval
#define _ion_dikdv *_ppvar[5]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_Exp(void);
static void _hoc_evaluate_fct(void);
static void _hoc_states(void);
static void _hoc_vtrap(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_mchh2", _hoc_setdata,
"Exp_mchh2", _hoc_Exp,
"evaluate_fct_mchh2", _hoc_evaluate_fct,
"states_mchh2", _hoc_states,
"vtrap_mchh2", _hoc_vtrap,
0, 0
};
#define Exp Exp_mchh2
#define vtrap vtrap_mchh2
extern double Exp( double );
extern double vtrap( double , double );
/* declare global and static user variables */
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"gnabar_mchh2", "mho/cm2",
"gkbar_mchh2", "mho/cm2",
"vtraub_mchh2", "mV",
0,0
};
static double delta_t = 1;
static double h0 = 0;
static double m0 = 0;
static double n0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"mchh2",
"gnabar_mchh2",
"gkbar_mchh2",
"vtraub_mchh2",
0,
"m_inf_mchh2",
"h_inf_mchh2",
"n_inf_mchh2",
"tau_m_mchh2",
"tau_h_mchh2",
"tau_n_mchh2",
"m_exp_mchh2",
"h_exp_mchh2",
"n_exp_mchh2",
0,
"m_mchh2",
"h_mchh2",
"n_mchh2",
0,
0};
static Symbol* _na_sym;
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 25, _prop);
/*initialize range parameters*/
gnabar = 0.003;
gkbar = 0.005;
vtraub = -63;
_prop->param = _p;
_prop->param_size = 25;
_ppvar = nrn_prop_datum_alloc(_mechtype, 6, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_na_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[3]._pval = &prop_ion->param[0]; /* ek */
_ppvar[4]._pval = &prop_ion->param[3]; /* ik */
_ppvar[5]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _mc_hh2_reg() {
int _vectorized = 0;
_initlists();
ion_reg("na", -10000.);
ion_reg("k", -10000.);
_na_sym = hoc_lookup("na_ion");
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 25, 6);
hoc_register_dparam_semantics(_mechtype, 0, "na_ion");
hoc_register_dparam_semantics(_mechtype, 1, "na_ion");
hoc_register_dparam_semantics(_mechtype, 2, "na_ion");
hoc_register_dparam_semantics(_mechtype, 3, "k_ion");
hoc_register_dparam_semantics(_mechtype, 4, "k_ion");
hoc_register_dparam_semantics(_mechtype, 5, "k_ion");
hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 mchh2 D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/mc_hh2.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Hippocampal/cortical HH channels";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(double);
static int states();
static int states ( ) {
evaluate_fct ( _threadargscomma_ v ) ;
m = m + m_exp * ( m_inf - m ) ;
h = h + h_exp * ( h_inf - h ) ;
n = n + n_exp * ( n_inf - n ) ;
/*VERBATIM*/
return 0;
return 0; }
static void _hoc_states(void) {
double _r;
_r = 1.;
states ( );
hoc_retpushx(_r);
}
static int evaluate_fct ( double _lv ) {
double _la , _lb , _lv2 ;
_lv2 = _lv - vtraub ;
_la = 0.32 * vtrap ( _threadargscomma_ 13.0 - _lv2 , 4.0 ) ;
_lb = 0.28 * vtrap ( _threadargscomma_ _lv2 - 40.0 , 5.0 ) ;
tau_m = 1.0 / ( _la + _lb ) / tadj ;
m_inf = _la / ( _la + _lb ) ;
_la = 0.128 * Exp ( _threadargscomma_ ( 17.0 - _lv2 ) / 18.0 ) ;
_lb = 4.0 / ( 1.0 + Exp ( _threadargscomma_ ( 40.0 - _lv2 ) / 5.0 ) ) ;
tau_h = 1.0 / ( _la + _lb ) / tadj ;
h_inf = _la / ( _la + _lb ) ;
_la = 0.032 * vtrap ( _threadargscomma_ 15.0 - _lv2 , 5.0 ) ;
_lb = 0.5 * Exp ( _threadargscomma_ ( 10.0 - _lv2 ) / 40.0 ) ;
tau_n = 1.0 / ( _la + _lb ) / tadj ;
n_inf = _la / ( _la + _lb ) ;
m_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_m ) ;
h_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_h ) ;
n_exp = 1.0 - Exp ( _threadargscomma_ - dt / tau_n ) ;
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
_r = 1.;
evaluate_fct ( *getarg(1) );
hoc_retpushx(_r);
}
double vtrap ( double _lx , double _ly ) {
double _lvtrap;
if ( fabs ( _lx / _ly ) < 1e-6 ) {
_lvtrap = _ly * ( 1.0 - _lx / _ly / 2.0 ) ;
}
else {
_lvtrap = _lx / ( Exp ( _threadargscomma_ _lx / _ly ) - 1.0 ) ;
}
return _lvtrap;
}
static void _hoc_vtrap(void) {
double _r;
_r = vtrap ( *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
double Exp ( double _lx ) {
double _lExp;
if ( _lx < - 100.0 ) {
_lExp = 0.0 ;
}
else {
_lExp = exp ( _lx ) ;
}
return _lExp;
}
static void _hoc_Exp(void) {
double _r;
_r = Exp ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ hoc_execerror("mchh2", "cannot be used with CVODE"); return 0;}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
nrn_update_ion_pointer(_k_sym, _ppvar, 3, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 4, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 5, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
m = m0;
n = n0;
{
tadj = pow( 3.0 , ( ( celsius - 36.0 ) / 10.0 ) ) ;
m = 0.0 ;
h = 0.0 ;
n = 0.0 ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ena = _ion_ena;
ek = _ion_ek;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
ina = gnabar * m * m * m * h * ( v - ena ) ;
ik = gkbar * n * n * n * n * ( v - ek ) ;
}
_current += ina;
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ena = _ion_ena;
ek = _ion_ek;
_g = _nrn_current(_v + .001);
{ double _dik;
double _dina;
_dina = ina;
_dik = ik;
_rhs = _nrn_current(_v);
_ion_dinadv += (_dina - ina)/.001 ;
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ena = _ion_ena;
ek = _ion_ek;
{ error = states();
if(error){fprintf(stderr,"at line 68 in file mc_hh2.mod:\n SOLVE states\n"); nrn_complain(_p); abort_run(error);}
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "mc_hh2.mod";
static const char* nmodl_file_text =
"TITLE Hippocampal/cortical HH channels\n"
"\n"
"COMMENT\n"
" Fast Na+ and K+ currents responsible for action potentials\n"
" Iterative equations \n"
" \n"
" Equations modified by Traub, for Hippocampal Pyramidal cells, in:\n"
" Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991\n"
" \n"
" range variable vtraub adjust threshold\n"
" \n"
" Written by Alain Destexhe, Salk Institute, Aug 1992\n"
" Modified Oct 96 for compatibility with Windows: trap low values of arguments\n"
"ENDCOMMENT\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX mchh2\n"
" USEION na READ ena WRITE ina\n"
" USEION k READ ek WRITE ik\n"
" RANGE gnabar, gkbar, vtraub\n"
" RANGE m_inf, h_inf, n_inf\n"
" RANGE tau_m, tau_h, tau_n\n"
" RANGE m_exp, h_exp, n_exp\n"
"}\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
"}\n"
"\n"
"PARAMETER {\n"
" gnabar = .003 (mho/cm2)\n"
" gkbar = .005 (mho/cm2)\n"
"\n"
" ena = 50 (mV)\n"
" ek = -90 (mV)\n"
" celsius = 36 (degC)\n"
" dt (ms)\n"
" v (mV)\n"
" vtraub = -63 (mV)\n"
"}\n"
"\n"
"STATE {\n"
" m h n\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ina (mA/cm2)\n"
" ik (mA/cm2)\n"
" il (mA/cm2)\n"
" m_inf\n"
" h_inf\n"
" n_inf\n"
" tau_m\n"
" tau_h\n"
" tau_n\n"
" m_exp\n"
" h_exp\n"
" n_exp\n"
" tadj\n"
"}\n"
"\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states\n"
" ina = gnabar * m*m*m*h * (v - ena)\n"
" ik = gkbar * n*n*n*n * (v - ek)\n"
"}\n"
"\n"
"\n"
":DERIVATIVE states { : exact Hodgkin-Huxley equations\n"
": evaluate_fct(v)\n"
": m' = (m_inf - m) / tau_m\n"
": h' = (h_inf - h) / tau_h\n"
": n' = (n_inf - n) / tau_n\n"
":}\n"
"\n"
"PROCEDURE states() { : exact when v held constant\n"
" evaluate_fct(v)\n"
" m = m + m_exp * (m_inf - m)\n"
" h = h + h_exp * (h_inf - h)\n"
" n = n + n_exp * (n_inf - n)\n"
" VERBATIM\n"
" return 0;\n"
" ENDVERBATIM\n"
"}\n"
"\n"
"UNITSOFF\n"
"INITIAL {\n"
":\n"
": Q10 was assumed to be 3 for both currents\n"
":\n"
" tadj = 3.0 ^ ((celsius-36)/ 10 )\n"
"\n"
" m = 0\n"
" h = 0\n"
" n = 0\n"
"}\n"
"\n"
"PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2\n"
"\n"
" v2 = v - vtraub : convert to traub convention\n"
"\n"
": a = 0.32 * (13-v2) / ( Exp((13-v2)/4) - 1)\n"
" a = 0.32 * vtrap(13-v2, 4)\n"
": b = 0.28 * (v2-40) / ( Exp((v2-40)/5) - 1)\n"
" b = 0.28 * vtrap(v2-40, 5)\n"
" tau_m = 1 / (a + b) / tadj\n"
" m_inf = a / (a + b)\n"
"\n"
" a = 0.128 * Exp((17-v2)/18)\n"
" b = 4 / ( 1 + Exp((40-v2)/5) )\n"
" tau_h = 1 / (a + b) / tadj\n"
" h_inf = a / (a + b)\n"
"\n"
": a = 0.032 * (15-v2) / ( Exp((15-v2)/5) - 1)\n"
" a = 0.032 * vtrap(15-v2, 5)\n"
" b = 0.5 * Exp((10-v2)/40)\n"
" tau_n = 1 / (a + b) / tadj\n"
" n_inf = a / (a + b)\n"
"\n"
" m_exp = 1 - Exp(-dt/tau_m)\n"
" h_exp = 1 - Exp(-dt/tau_h)\n"
" n_exp = 1 - Exp(-dt/tau_n)\n"
"}\n"
"FUNCTION vtrap(x,y) {\n"
" if (fabs(x/y) < 1e-6) {\n"
" vtrap = y*(1 - x/y/2)\n"
" }else{\n"
" vtrap = x/(Exp(x/y)-1)\n"
" }\n"
"}\n"
"\n"
"FUNCTION Exp(x) {\n"
" if (x < -100) {\n"
" Exp = 0\n"
" }else{\n"
" Exp = exp(x)\n"
" }\n"
"} \n"
;
#endif