/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__tanhSyn
#define _nrn_initial _nrn_initial__tanhSyn
#define nrn_cur _nrn_cur__tanhSyn
#define _nrn_current _nrn_current__tanhSyn
#define nrn_jacob _nrn_jacob__tanhSyn
#define nrn_state _nrn_state__tanhSyn
#define _net_receive _net_receive__tanhSyn 
#define state state__tanhSyn 
 
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 static double *_p; static Datum *_ppvar;
 
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define e _p[0]
#define alpha _p[1]
#define tau _p[2]
#define noise _p[3]
#define g _p[4]
#define rparam _p[5]
#define voff _p[6]
#define i _p[7]
#define s _p[8]
#define Ds _p[9]
#define _g _p[10]
#define _nd_area  *_ppvar[0]._pval
#define vpre	*_ppvar[2]._pval
#define _p_vpre	_ppvar[2]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  2;
 /* external NEURON variables */
 /* declaration of user functions */
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif

 extern Prop* nrn_point_prop_;
 static int _pointtype;
 static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
 return create_point_process(_pointtype, _ho);
}
 static void _hoc_destroy_pnt();
 static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
 return loc_point_process(_pointtype, _vptr);
}
 static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
 return has_loc_point(_vptr);
}
 static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
 double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _p = _prop->param; _ppvar = _prop->dparam;
 }
 static void _hoc_setdata(void* _vptr) { Prop* _prop;
 _prop = ((Point_process*)_vptr)->_prop;
   _setdata(_prop);
 }
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 0,0
};
 static Member_func _member_func[] = {
 "loc", _hoc_loc_pnt,
 "has_loc", _hoc_has_loc,
 "get_loc", _hoc_get_loc_pnt,
 0, 0
};
 /* declare global and static user variables */
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 "tau", 1e-009, 1e+009,
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "e", "mV",
 "tau", "ms",
 "g", "uS",
 "voff", "mV",
 "i", "nA",
 "vpre", "mV",
 0,0
};
 static double delta_t = 0.01;
 static double s0 = 0;
 static double v = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 static void _hoc_destroy_pnt(_vptr) void* _vptr; {
   destroy_point_process(_vptr);
}
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[3]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.7.0",
"tanhSyn",
 "e",
 "alpha",
 "tau",
 "noise",
 "g",
 "rparam",
 "voff",
 0,
 "i",
 0,
 "s",
 0,
 "vpre",
 0};
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
  if (nrn_point_prop_) {
	_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
	_p = nrn_point_prop_->param;
	_ppvar = nrn_point_prop_->dparam;
 }else{
 	_p = nrn_prop_data_alloc(_mechtype, 11, _prop);
 	/*initialize range parameters*/
 	e = 0;
 	alpha = 0.55;
 	tau = 5.26;
 	noise = 0;
 	g = 0.00027;
 	rparam = 4;
 	voff = 0;
  }
 	_prop->param = _p;
 	_prop->param_size = 11;
  if (!nrn_point_prop_) {
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
  }
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _noisytanhsyn_reg() {
	int _vectorized = 0;
  _initlists();
 	_pointtype = point_register_mech(_mechanism,
	 nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
	 hoc_nrnpointerindex, 0,
	 _hoc_create_pnt, _hoc_destroy_pnt, _member_func);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
 #if NMODL_TEXT
  hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
  hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
  hoc_register_prop_size(_mechtype, 11, 4);
  hoc_register_dparam_semantics(_mechtype, 0, "area");
  hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
  hoc_register_dparam_semantics(_mechtype, 2, "pointer");
  hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 tanhSyn D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/noisytanhsyn.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
static int _reset;
static char *modelname = "Continuous and instantaneous tanh-type synaptic transmission mechanism";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[1], _dlist1[1];
 static int state(_threadargsproto_);
 
/*CVODE*/
 static int _ode_spec1 () {_reset=0;
 {
   Ds = alpha * ( 1.0 + tanh ( vpre - voff / rparam ) ) * ( 1.0 - s ) - s / tau + noise ;
   }
 return _reset;
}
 static int _ode_matsol1 () {
 Ds = Ds  / (1. - dt*( ( alpha * ( 1.0 + tanh ( vpre - voff / rparam ) ) )*( ( ( - 1.0 ) ) ) - ( 1.0 ) / tau )) ;
  return 0;
}
 /*END CVODE*/
 static int state () {_reset=0;
 {
    s = s + (1. - exp(dt*(( alpha * ( 1.0 + tanh ( vpre - voff / rparam ) ) )*( ( ( - 1.0 ) ) ) - ( 1.0 ) / tau)))*(- ( ( ( alpha )*( ( 1.0 + tanh ( vpre - voff / rparam ) ) ) )*( ( 1.0 ) ) + noise ) / ( ( ( alpha )*( ( 1.0 + tanh ( vpre - voff / rparam ) ) ) )*( ( ( - 1.0 ) ) ) - ( 1.0 ) / tau ) - s) ;
   }
  return 0;
}
 
static int _ode_count(int _type){ return 1;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
     _ode_spec1 ();
 }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 1; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 ();
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
 _ode_matsol_instance1(_threadargs_);
 }}

static void initmodel() {
  int _i; double _save;_ninits++;
 _save = t;
 t = 0.0;
{
  s = s0;
 {
   s = 0.0 ;
   }
  _sav_indep = t; t = _save;

}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
 initmodel();
}}

static double _nrn_current(double _v){double _current=0.;v=_v;{ {
   i = g * s * ( v - e ) ;
   }
 _current += i;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 _g = _nrn_current(_v + .001);
 	{ _rhs = _nrn_current(_v);
 	}
 _g = (_g - _rhs)/.001;
 _g *=  1.e2/(_nd_area);
 _rhs *= 1.e2/(_nd_area);
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
 { error =  state();
 if(error){fprintf(stderr,"at line 46 in file noisytanhsyn.mod:\n	SOLVE state METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
 }}}

}

static void terminal(){}

static void _initlists() {
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(s) - _p;  _dlist1[0] = &(Ds) - _p;
_first = 0;
}

#if NMODL_TEXT
static const char* nmodl_filename = "noisytanhsyn.mod";
static const char* nmodl_file_text = 
  "TITLE Continuous and instantaneous tanh-type synaptic transmission mechanism\n"
  "COMMENT\n"
  "	The presynaptic membrane potential can be specified via setpointer\n"
  "	in the hoc file.\n"
  "ENDCOMMENT\n"
  "\n"
  "NEURON {\n"
  "	POINT_PROCESS tanhSyn\n"
  "	RANGE tau, e, i, noise, alpha, s, g, rparam, voff\n"
  "	NONSPECIFIC_CURRENT i\n"
  "	POINTER vpre\n"
  "}\n"
  "\n"
  "UNITS {\n"
  "	(uS) = (microsiemens)\n"
  "	(mS) = (millisiemens)\n"
  "	(mV) = (millivolt)\n"
  "	(mA) = (milliamp)\n"
  "}\n"
  "\n"
  "PARAMETER {\n"
  "	e = 0	(mV)\n"
  "	alpha = 0.55\n"
  "	tau = 5.26 (ms) <1e-9,1e9>\n"
  "	noise = 0\n"
  "	g = 2.7e-4 (uS)\n"
  "	rparam = 4\n"
  "	voff = 0 (mV)\n"
  "}\n"
  "\n"
  "ASSIGNED {\n"
  "	v (mV)\n"
  "	vpre (mV)\n"
  "	i (nA)\n"
  "}\n"
  "\n"
  "STATE {\n"
  "	s\n"
  "}\n"
  "\n"
  "INITIAL {\n"
  "	s=0\n"
  "}\n"
  "\n"
  "BREAKPOINT {\n"
  "	SOLVE state METHOD cnexp\n"
  "	i = g*s*(v - e)\n"
  "}\n"
  "\n"
  "DERIVATIVE state {\n"
  "	s' = alpha*(1+tanh(vpre-voff/rparam))*(1-s) - s/tau + noise\n"
  "}\n"
  ;
#endif