/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__pcCaBK
#define _nrn_initial _nrn_initial__pcCaBK
#define nrn_cur _nrn_cur__pcCaBK
#define _nrn_current _nrn_current__pcCaBK
#define nrn_jacob _nrn_jacob__pcCaBK
#define nrn_state _nrn_state__pcCaBK
#define _net_receive _net_receive__pcCaBK
#define rates rates__pcCaBK
#define states states__pcCaBK
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gkbar _p[0]
#define ik _p[1]
#define gk _p[2]
#define m _p[3]
#define z _p[4]
#define h _p[5]
#define ek _p[6]
#define cai _p[7]
#define qt _p[8]
#define Dm _p[9]
#define Dz _p[10]
#define Dh _p[11]
#define _g _p[12]
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#define _ion_cai *_ppvar[3]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_pcCaBK", _hoc_setdata,
"rates_pcCaBK", _hoc_rates,
0, 0
};
/* declare global and static user variables */
#define hinf hinf_pcCaBK
double hinf = 0;
#define minf minf_pcCaBK
double minf = 0;
#define tauz tauz_pcCaBK
double tauz = 0;
#define tauh tauh_pcCaBK
double tauh = 0;
#define taum taum_pcCaBK
double taum = 0;
#define zhalf zhalf_pcCaBK
double zhalf = 0.001;
#define zinf zinf_pcCaBK
double zinf = 0;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"zhalf_pcCaBK", "mM",
"taum_pcCaBK", "ms",
"tauh_pcCaBK", "ms",
"tauz_pcCaBK", "ms",
"gkbar_pcCaBK", "S/cm2",
"ik_pcCaBK", "mA/cm2",
"gk_pcCaBK", "S/cm2",
0,0
};
static double delta_t = 0.01;
static double h0 = 0;
static double m0 = 0;
static double v = 0;
static double z0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"zhalf_pcCaBK", &zhalf_pcCaBK,
"minf_pcCaBK", &minf_pcCaBK,
"taum_pcCaBK", &taum_pcCaBK,
"hinf_pcCaBK", &hinf_pcCaBK,
"tauh_pcCaBK", &tauh_pcCaBK,
"zinf_pcCaBK", &zinf_pcCaBK,
"tauz_pcCaBK", &tauz_pcCaBK,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[4]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"pcCaBK",
"gkbar_pcCaBK",
0,
"ik_pcCaBK",
"gk_pcCaBK",
0,
"m_pcCaBK",
"z_pcCaBK",
"h_pcCaBK",
0,
0};
static Symbol* _k_sym;
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 13, _prop);
/*initialize range parameters*/
gkbar = 0.014;
_prop->param = _p;
_prop->param_size = 13;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[3]._pval = &prop_ion->param[1]; /* cai */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _pc_CaBK_reg() {
int _vectorized = 0;
_initlists();
ion_reg("k", -10000.);
ion_reg("ca", -10000.);
_k_sym = hoc_lookup("k_ion");
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 13, 5);
hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 pcCaBK D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/pc_CaBK.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double q10 = 2.2;
static double cvm = 28.9;
static double ckm = 6.2;
static double ctm = 0.000505;
static double cvtm1 = 86.4;
static double cktm1 = -10.1;
static double cvtm2 = -33.3;
static double cktm2 = 10;
static double ctauz = 1;
static double ch = 0.085;
static double cvh = 32;
static double ckh = -5.8;
static double cth = 0.0019;
static double cvth1 = 48.5;
static double ckth1 = -5.2;
static double cvth2 = -54.2;
static double ckth2 = 12.9;
static int _reset;
static char *modelname = "BK-type Purkinje calcium-activated potassium current";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rates(double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[3], _dlist1[3];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
Dm = ( minf - m ) / taum ;
Dz = ( zinf - z ) / tauz ;
Dh = ( hinf - h ) / tauh ;
}
return _reset;
}
static int _ode_matsol1 () {
rates ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / taum )) ;
Dz = Dz / (1. - dt*( ( ( ( - 1.0 ) ) ) / tauz )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tauh )) ;
return 0;
}
/*END CVODE*/
static int states () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taum)))*(- ( ( ( minf ) ) / taum ) / ( ( ( ( - 1.0 ) ) ) / taum ) - m) ;
z = z + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tauz)))*(- ( ( ( zinf ) ) / tauz ) / ( ( ( ( - 1.0 ) ) ) / tauz ) - z) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tauh)))*(- ( ( ( hinf ) ) / tauh ) / ( ( ( ( - 1.0 ) ) ) / tauh ) - h) ;
}
return 0;
}
static int rates ( double _lv ) {
_lv = _lv + 5.0 ;
minf = 1.0 / ( 1.0 + exp ( - ( _lv + cvm ) / ckm ) ) ;
taum = ( 1e3 ) * ( ctm + 1.0 / ( exp ( - ( _lv + cvtm1 ) / cktm1 ) + exp ( - ( _lv + cvtm2 ) / cktm2 ) ) ) / qt ;
zinf = 1.0 / ( 1.0 + zhalf / cai ) ;
tauz = ctauz / qt ;
hinf = ch + ( 1.0 - ch ) / ( 1.0 + exp ( - ( _lv + cvh ) / ckh ) ) ;
tauh = ( 1e3 ) * ( cth + 1.0 / ( exp ( - ( _lv + cvth1 ) / ckth1 ) + exp ( - ( _lv + cvth2 ) / ckth2 ) ) ) / qt ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 3;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
cai = _ion_cai;
_ode_spec1 ();
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 3; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 ();
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
cai = _ion_cai;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 1);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
m = m0;
z = z0;
{
qt = pow( q10 , ( ( celsius - 22.0 ) / 10.0 ) ) ;
rates ( _threadargscomma_ v ) ;
m = minf ;
z = zinf ;
h = hinf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
cai = _ion_cai;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
gk = gkbar * pow( m , 3.0 ) * pow( z , 2.0 ) * h ;
ik = gk * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
cai = _ion_cai;
_g = _nrn_current(_v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ek = _ion_ek;
cai = _ion_cai;
{ error = states();
if(error){fprintf(stderr,"at line 105 in file pc_CaBK.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_slist1[1] = &(z) - _p; _dlist1[1] = &(Dz) - _p;
_slist1[2] = &(h) - _p; _dlist1[2] = &(Dh) - _p;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "pc_CaBK.mod";
static const char* nmodl_file_text =
"TITLE BK-type Purkinje calcium-activated potassium current\n"
"\n"
"COMMENT\n"
"\n"
" NEURON implementation of a BK-channel in Purkinje cells\n"
" Kinetical Scheme: Hodgkin-Huxley (m^3*z^2*h)\n"
"\n"
" Modified from Khaliq et al., J.Neurosci. 23(2003)4899\n"
" \n"
" Laboratory for Neuronal Circuit Dynamics\n"
" RIKEN Brain Science Institute, Wako City, Japan\n"
" http://www.neurodynamics.brain.riken.jp\n"
"\n"
" Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602\n"
" Date of Implementation: May 2005\n"
" Contact: akemann@brain.riken.jp\n"
"\n"
"ENDCOMMENT\n"
"\n"
"NEURON {\n"
" SUFFIX pcCaBK\n"
" USEION k READ ek WRITE ik\n"
" USEION ca READ cai\n"
" RANGE gkbar, gk, ik\n"
" GLOBAL minf, taum, hinf, tauh, zinf, tauz\n"
" GLOBAL zhalf\n"
"}\n"
"\n"
"UNITS {\n"
" (mV) = (millivolt)\n"
" (mA) = (milliamp)\n"
" (nA) = (nanoamp)\n"
" (pA) = (picoamp)\n"
" (S) = (siemens)\n"
" (nS) = (nanosiemens)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
" (molar) = (1/liter)\n"
" (mM) = (millimolar) \n"
"}\n"
"\n"
"CONSTANT {\n"
" q10 = 2.2\n"
" \n"
" cvm = 28.9 (mV)\n"
" ckm = 6.2 (mV)\n"
"\n"
" ctm = 0.000505 (s)\n"
" cvtm1 = 86.4 (mV)\n"
" cktm1 = -10.1 (mV)\n"
" cvtm2 = -33.3 (mV)\n"
" cktm2 = 10 (mV)\n"
"\n"
" ctauz = 1 (ms)\n"
"\n"
" ch = 0.085\n"
" cvh = 32 (mV)\n"
" ckh = -5.8 (mV)\n"
" cth = 0.0019 (s)\n"
" cvth1 = 48.5 (mV)\n"
" ckth1 = -5.2 (mV)\n"
" cvth2 = -54.2 (mV)\n"
" ckth2 = 12.9 (mV)\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius (degC)\n"
"\n"
" gkbar = 0.014 (S/cm2)\n"
"\n"
" ek (mV)\n"
" cai (mM)\n"
"\n"
" zhalf = 0.001 (mM)\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ik (mA/cm2)\n"
" qt\n"
" gk (S/cm2) \n"
" minf\n"
" taum (ms)\n"
" hinf\n"
" tauh (ms)\n"
" zinf\n"
" tauz (ms)\n"
"}\n"
"\n"
"STATE {\n"
" m FROM 0 TO 1\n"
" z FROM 0 TO 1\n"
" h FROM 0 TO 1\n"
"}\n"
"\n"
"INITIAL {\n"
" qt = q10^((celsius-22 (degC))/10 (degC))\n"
" rates(v)\n"
" m = minf\n"
" z = zinf\n"
" h = hinf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" gk = gkbar * m^3 * z^2 * h \n"
" ik = gk * (v - ek)\n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" rates(v)\n"
" m' = (minf-m)/taum\n"
" z' = (zinf-z)/tauz\n"
" h' = (hinf-h)/tauh\n"
"}\n"
"\n"
"PROCEDURE rates( v (mV) ) {\n"
" v = v + 5 (mV)\n"
" minf = 1 / ( 1+exp(-(v+cvm)/ckm) )\n"
" taum = (1e3) * ( ctm + 1 (s) / ( exp(-(v+cvtm1)/cktm1) + exp(-(v+cvtm2)/cktm2) ) ) / qt\n"
" \n"
" zinf = 1 /(1 + zhalf/cai)\n"
" tauz = ctauz/qt\n"
"\n"
" hinf = ch + (1-ch) / ( 1+exp(-(v+cvh)/ckh) )\n"
" tauh = (1e3) * ( cth + 1 (s) / ( exp(-(v+cvth1)/ckth1) + exp(-(v+cvth2)/ckth2) ) ) / qt\n"
"}\n"
;
#endif