/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__pcCaP
#define _nrn_initial _nrn_initial__pcCaP
#define nrn_cur _nrn_cur__pcCaP
#define _nrn_current _nrn_current__pcCaP
#define nrn_jacob _nrn_jacob__pcCaP
#define nrn_state _nrn_state__pcCaP
#define _net_receive _net_receive__pcCaP
#define rates rates__pcCaP
#define states states__pcCaP
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define pcabar _p[0]
#define ica _p[1]
#define ghk_value _p[2]
#define m _p[3]
#define cai _p[4]
#define cao _p[5]
#define qt _p[6]
#define T _p[7]
#define E _p[8]
#define zeta _p[9]
#define Dm _p[10]
#define _g _p[11]
#define _ion_cai *_ppvar[0]._pval
#define _ion_cao *_ppvar[1]._pval
#define _ion_ica *_ppvar[2]._pval
#define _ion_dicadv *_ppvar[3]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_ghk(void);
static void _hoc_kelvinfkt(void);
static void _hoc_rates(void);
static void _hoc_taumfkt(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_pcCaP", _hoc_setdata,
"ghk_pcCaP", _hoc_ghk,
"kelvinfkt_pcCaP", _hoc_kelvinfkt,
"rates_pcCaP", _hoc_rates,
"taumfkt_pcCaP", _hoc_taumfkt,
0, 0
};
#define ghk ghk_pcCaP
#define kelvinfkt kelvinfkt_pcCaP
#define taumfkt taumfkt_pcCaP
extern double ghk( double , double , double , double );
extern double kelvinfkt( double );
extern double taumfkt( double );
/* declare global and static user variables */
#define monovalPerm monovalPerm_pcCaP
double monovalPerm = 0;
#define monovalConc monovalConc_pcCaP
double monovalConc = 140;
#define minf minf_pcCaP
double minf = 0;
#define taum taum_pcCaP
double taum = 0;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"monovalConc_pcCaP", "mM",
"taum_pcCaP", "ms",
"pcabar_pcCaP", "cm/s",
"ica_pcCaP", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double m0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"monovalConc_pcCaP", &monovalConc_pcCaP,
"monovalPerm_pcCaP", &monovalPerm_pcCaP,
"minf_pcCaP", &minf_pcCaP,
"taum_pcCaP", &taum_pcCaP,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[4]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"pcCaP",
"pcabar_pcCaP",
0,
"ica_pcCaP",
"ghk_value_pcCaP",
0,
"m_pcCaP",
0,
0};
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
/*initialize range parameters*/
pcabar = 6e-005;
_prop->param = _p;
_prop->param_size = 12;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[0]._pval = &prop_ion->param[1]; /* cai */
_ppvar[1]._pval = &prop_ion->param[2]; /* cao */
_ppvar[2]._pval = &prop_ion->param[3]; /* ica */
_ppvar[3]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _pc_CaP_reg() {
int _vectorized = 0;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 12, 5);
hoc_register_dparam_semantics(_mechtype, 0, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 1, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 pcCaP D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/pc_CaP.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double q10 = 2.2;
static double F = 9.6485e4;
static double R = 8.3145;
static double cv = 19;
static double ck = 5.5;
static int _reset;
static char *modelname = "P-type calcium channel";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rates(double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[1], _dlist1[1];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
Dm = ( minf - m ) / taum ;
}
return _reset;
}
static int _ode_matsol1 () {
rates ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / taum )) ;
return 0;
}
/*END CVODE*/
static int states () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taum)))*(- ( ( ( minf ) ) / taum ) / ( ( ( ( - 1.0 ) ) ) / taum ) - m) ;
}
return 0;
}
double ghk ( double _lv , double _lci , double _lco , double _lz ) {
double _lghk;
E = ( 1e-3 ) * _lv ;
zeta = ( _lz * F * E ) / ( R * T ) ;
if ( fabs ( 1.0 - exp ( - zeta ) ) < 1e-6 ) {
_lghk = ( 1e-6 ) * ( _lz * F ) * ( _lci - _lco * exp ( - zeta ) ) * ( 1.0 + zeta / 2.0 ) ;
}
else {
_lghk = ( 1e-6 ) * ( _lz * zeta * F ) * ( _lci - _lco * exp ( - zeta ) ) / ( 1.0 - exp ( - zeta ) ) ;
}
return _lghk;
}
static void _hoc_ghk(void) {
double _r;
_r = ghk ( *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) );
hoc_retpushx(_r);
}
static int rates ( double _lv ) {
minf = 1.0 / ( 1.0 + exp ( - ( _lv + cv ) / ck ) ) ;
taum = ( 1e3 ) * taumfkt ( _threadargscomma_ _lv ) / qt ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
double taumfkt ( double _lv ) {
double _ltaumfkt;
if ( _lv > - 50.0 ) {
_ltaumfkt = 0.000191 + 0.00376 * exp ( - pow( ( ( _lv + 41.9 ) / 27.8 ) , 2.0 ) ) ;
}
else {
_ltaumfkt = 0.00026367 + 0.1278 * exp ( 0.10327 * _lv ) ;
}
return _ltaumfkt;
}
static void _hoc_taumfkt(void) {
double _r;
_r = taumfkt ( *getarg(1) );
hoc_retpushx(_r);
}
double kelvinfkt ( double _lt ) {
double _lkelvinfkt;
_lkelvinfkt = 273.19 + _lt ;
return _lkelvinfkt;
}
static void _hoc_kelvinfkt(void) {
double _r;
_r = kelvinfkt ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_spec1 ();
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 ();
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
cai = _ion_cai;
cao = _ion_cao;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_ca_sym, _ppvar, 0, 1);
nrn_update_ion_pointer(_ca_sym, _ppvar, 1, 2);
nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
m = m0;
{
qt = pow( q10 , ( ( celsius - 22.0 ) / 10.0 ) ) ;
T = kelvinfkt ( _threadargscomma_ celsius ) ;
rates ( _threadargscomma_ v ) ;
m = minf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
cao = _ion_cao;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
ica = ( 1e3 ) * pcabar * m * ghk ( _threadargscomma_ v , cai , cao , 2.0 ) ;
ghk_value = ghk ( _threadargscomma_ v , cai , cao , 2.0 ) ;
}
_current += ica;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
cao = _ion_cao;
_g = _nrn_current(_v + .001);
{ double _dica;
_dica = ica;
_rhs = _nrn_current(_v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
cai = _ion_cai;
cao = _ion_cao;
{ error = states();
if(error){fprintf(stderr,"at line 83 in file pc_CaP.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "pc_CaP.mod";
static const char* nmodl_file_text =
"TITLE P-type calcium channel\n"
"\n"
"COMMENT\n"
"\n"
"NEURON implementation of a P-type calcium channel\n"
"Kinetical scheme: Hodgkin-Huxley (m), no inactivation\n"
"\n"
"Modified from Khaliq et al., J. Neurosci. 23(2003)4899\n"
"\n"
"Laboratory for Neuronal Circuit Dynamics\n"
"RIKEN Brain Science Institute, Wako City, Japan\n"
"http://www.neurodynamics.brain.riken.jp\n"
"\n"
"Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602\n"
"Date of Implementation: May 2005\n"
"Contact: akemann@brain.riken.jp\n"
"\n"
"ENDCOMMENT\n"
"\n"
"NEURON {\n"
" SUFFIX pcCaP\n"
" USEION ca READ cai, cao WRITE ica\n"
" RANGE pcabar, ica, ghk_value\n"
" GLOBAL minf, taum\n"
" GLOBAL monovalConc, monovalPerm\n"
"}\n"
"\n"
"UNITS {\n"
" (mV) = (millivolt)\n"
" (mA) = (milliamp)\n"
" (nA) = (nanoamp)\n"
" (pA) = (picoamp)\n"
" (S) = (siemens)\n"
" (nS) = (nanosiemens)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
" (molar) = (1/liter)\n"
" (mM) = (millimolar) \n"
"}\n"
"\n"
"CONSTANT {\n"
" q10 = 2.2\n"
" F = 9.6485e4 (coulombs)\n"
" R = 8.3145 (joule/kelvin)\n"
"\n"
" cv = 19 (mV)\n"
" ck = 5.5 (mV)\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius (degC)\n"
"\n"
" cai (mM)\n"
" cao (mM)\n"
"\n"
" pcabar = 6e-5 (cm/s)\n"
" monovalConc = 140 (mM)\n"
" monovalPerm = 0\n"
"}\n"
"\n"
"ASSIGNED {\n"
" qt\n"
" ica (mA/cm2)\n"
" minf \n"
" taum (ms)\n"
" T (kelvin)\n"
" E (volt)\n"
" zeta\n"
" ghk_value\n"
"}\n"
"\n"
"STATE { m }\n"
"\n"
"INITIAL {\n"
" qt = q10^((celsius-22 (degC))/10 (degC))\n"
" T = kelvinfkt( celsius )\n"
" rates(v)\n"
" m = minf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" ica = (1e3) * pcabar * m * ghk(v, cai, cao, 2)\n"
" ghk_value = ghk(v, cai, cao, 2)\n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" rates(v)\n"
" m' = (minf-m)/taum\n"
"}\n"
"\n"
"FUNCTION ghk( v (mV), ci (mM), co (mM), z ) (coulombs/cm3) { \n"
" E = (1e-3) * v\n"
" zeta = (z*F*E)/(R*T) \n"
" \n"
" : ci = ci + (monovalPerm) * (monovalConc) :Monovalent permeability\n"
"\n"
" if ( fabs(1-exp(-zeta)) < 1e-6 ) {\n"
" ghk = (1e-6) * (z*F) * (ci - co*exp(-zeta)) * (1 + zeta/2)\n"
" } else {\n"
" ghk = (1e-6) * (z*zeta*F) * (ci - co*exp(-zeta)) / (1-exp(-zeta))\n"
" }\n"
"}\n"
"\n"
"PROCEDURE rates( v (mV) ) {\n"
" minf = 1 / ( 1 + exp(-(v+cv)/ck) )\n"
" taum = (1e3) * taumfkt(v)/qt\n"
"}\n"
"\n"
"FUNCTION taumfkt( v (mV) ) (s) {\n"
" UNITSOFF\n"
" if ( v > -50 ) {\n"
" taumfkt = 0.000191 + 0.00376 * exp(-((v+41.9)/27.8)^2)\n"
" } else {\n"
" taumfkt = 0.00026367 + 0.1278 * exp(0.10327*v)\n"
" }\n"
" UNITSON\n"
"}\n"
"\n"
"FUNCTION kelvinfkt( t (degC) ) (kelvin) {\n"
" UNITSOFF\n"
" kelvinfkt = 273.19 + t\n"
" UNITSON\n"
"}\n"
;
#endif