/* Created by Language version: 7.7.0 */
/* NOT VECTORIZED */
#define NRN_VECTORIZED 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__pcKv4
#define _nrn_initial _nrn_initial__pcKv4
#define nrn_cur _nrn_cur__pcKv4
#define _nrn_current _nrn_current__pcKv4
#define nrn_jacob _nrn_jacob__pcKv4
#define nrn_state _nrn_state__pcKv4
#define _net_receive _net_receive__pcKv4
#define rates rates__pcKv4
#define states states__pcKv4
#define _threadargscomma_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargs_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gbar _p[0]
#define ik _p[1]
#define gk _p[2]
#define n _p[3]
#define h _p[4]
#define ek _p[5]
#define qt _p[6]
#define alphan _p[7]
#define betan _p[8]
#define alphah _p[9]
#define betah _p[10]
#define Dn _p[11]
#define Dh _p[12]
#define _g _p[13]
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_alphahfkt(void);
static void _hoc_alphanfkt(void);
static void _hoc_betahfkt(void);
static void _hoc_betanfkt(void);
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_pcKv4", _hoc_setdata,
"alphahfkt_pcKv4", _hoc_alphahfkt,
"alphanfkt_pcKv4", _hoc_alphanfkt,
"betahfkt_pcKv4", _hoc_betahfkt,
"betanfkt_pcKv4", _hoc_betanfkt,
"rates_pcKv4", _hoc_rates,
0, 0
};
#define alphahfkt alphahfkt_pcKv4
#define alphanfkt alphanfkt_pcKv4
#define betahfkt betahfkt_pcKv4
#define betanfkt betanfkt_pcKv4
extern double alphahfkt( double );
extern double alphanfkt( double );
extern double betahfkt( double );
extern double betanfkt( double );
/* declare global and static user variables */
#define hinf hinf_pcKv4
double hinf = 0;
#define ninf ninf_pcKv4
double ninf = 0;
#define tauh tauh_pcKv4
double tauh = 0;
#define taun taun_pcKv4
double taun = 0;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"gbar_pcKv4", 0, 1e+009,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"taun_pcKv4", "ms",
"tauh_pcKv4", "ms",
"gbar_pcKv4", "mho/cm2",
"ik_pcKv4", "mA/cm2",
"gk_pcKv4", "mho/cm2",
0,0
};
static double delta_t = 0.01;
static double h0 = 0;
static double n0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"ninf_pcKv4", &ninf_pcKv4,
"taun_pcKv4", &taun_pcKv4,
"hinf_pcKv4", &hinf_pcKv4,
"tauh_pcKv4", &tauh_pcKv4,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"pcKv4",
"gbar_pcKv4",
0,
"ik_pcKv4",
"gk_pcKv4",
0,
"n_pcKv4",
"h_pcKv4",
0,
0};
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 14, _prop);
/*initialize range parameters*/
gbar = 0.0039;
_prop->param = _p;
_prop->param_size = 14;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _pc_Kv4_reg() {
int _vectorized = 0;
_initlists();
ion_reg("k", -10000.);
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 14, 4);
hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 pcKv4 D:/Projects/SchreglmannEtAl2020/CCTC_model/modfiles/pc_Kv4.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double q10 = 2.2;
static double can = 0.15743;
static double cvan = 57;
static double ckan = -32.19976;
static double cbn = 0.15743;
static double cvbn = 57;
static double ckbn = 37.51346;
static double cah = 0.01342;
static double cvah = 60;
static double ckah = -7.86476;
static double cbh = 0.04477;
static double cvbh = 54;
static double ckbh = 11.3615;
static int _reset;
static char *modelname = "Voltage-gated potassium channel from Kv4 subunits";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int rates(double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
Dn = ( ninf - n ) / taun ;
Dh = ( hinf - h ) / tauh ;
}
return _reset;
}
static int _ode_matsol1 () {
rates ( _threadargscomma_ v ) ;
Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / taun )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tauh )) ;
return 0;
}
/*END CVODE*/
static int states () {_reset=0;
{
rates ( _threadargscomma_ v ) ;
n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taun)))*(- ( ( ( ninf ) ) / taun ) / ( ( ( ( - 1.0 ) ) ) / taun ) - n) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tauh)))*(- ( ( ( hinf ) ) / tauh ) / ( ( ( ( - 1.0 ) ) ) / tauh ) - h) ;
}
return 0;
}
static int rates ( double _lv ) {
alphan = alphanfkt ( _threadargscomma_ _lv ) ;
betan = betanfkt ( _threadargscomma_ _lv ) ;
ninf = alphan / ( alphan + betan ) ;
taun = 1.0 / ( qt * ( alphan + betan ) ) ;
alphah = alphahfkt ( _threadargscomma_ _lv ) ;
betah = betahfkt ( _threadargscomma_ _lv ) ;
hinf = alphah / ( alphah + betah ) ;
tauh = 1.0 / ( qt * ( alphah + betah ) ) ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
double alphanfkt ( double _lv ) {
double _lalphanfkt;
_lalphanfkt = can * exp ( - ( _lv + cvan ) / ckan ) ;
return _lalphanfkt;
}
static void _hoc_alphanfkt(void) {
double _r;
_r = alphanfkt ( *getarg(1) );
hoc_retpushx(_r);
}
double betanfkt ( double _lv ) {
double _lbetanfkt;
_lbetanfkt = cbn * exp ( - ( _lv + cvbn ) / ckbn ) ;
return _lbetanfkt;
}
static void _hoc_betanfkt(void) {
double _r;
_r = betanfkt ( *getarg(1) );
hoc_retpushx(_r);
}
double alphahfkt ( double _lv ) {
double _lalphahfkt;
_lalphahfkt = cah / ( 1.0 + exp ( - ( _lv + cvah ) / ckah ) ) ;
return _lalphahfkt;
}
static void _hoc_alphahfkt(void) {
double _r;
_r = alphahfkt ( *getarg(1) );
hoc_retpushx(_r);
}
double betahfkt ( double _lv ) {
double _lbetahfkt;
_lbetahfkt = cbh / ( 1.0 + exp ( - ( _lv + cvbh ) / ckbh ) ) ;
return _lbetahfkt;
}
static void _hoc_betahfkt(void) {
double _r;
_r = betahfkt ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_spec1 ();
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 ();
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
n = n0;
{
qt = pow( q10 , ( ( celsius - 22.0 ) / 10.0 ) ) ;
rates ( _threadargscomma_ v ) ;
n = ninf ;
h = hinf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
gk = gbar * pow( n , 4.0 ) * h ;
ik = gk * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
_g = _nrn_current(_v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ek = _ion_ek;
{ error = states();
if(error){fprintf(stderr,"at line 112 in file pc_Kv4.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(n) - _p; _dlist1[0] = &(Dn) - _p;
_slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p;
_first = 0;
}
#if NMODL_TEXT
static const char* nmodl_filename = "pc_Kv4.mod";
static const char* nmodl_file_text =
"TITLE Voltage-gated potassium channel from Kv4 subunits\n"
"\n"
"COMMENT\n"
"\n"
"NEURON implementation of a potassium channel from Kv4 subunits\n"
"Kinetical Scheme: Hodgkin-Huxley m^4*h\n"
"\n"
"Kinetic data taken from: Sacco and Tempia, J.Physiol. 543 (2002) 505\n"
"\n"
"ACTIVATION:\n"
"The rate constants of activation (alphan) and deactivation (betan) were approximated by:\n"
"\n"
"alphan = can * exp(-(v+cvan)/ckan)\n"
"betan = cbn * exp(-(v+cvbn)/ckbn)\n"
"\n"
"Parameters can, cvan, ckan, cbn, cvbn, ckbn\n"
"are defined in the CONSTANT block.\n"
"\n"
"INACTIVATION:\n"
"The model includes only the fast component of inactivation\n"
"The rate constants of inactivation (alphah) and de-inactivation (betah) were approximated by:\n"
"\n"
"alphah = cah / (1+exp(-(v+cvah)/ckah))\n"
"betah = cbh / (1+exp(-(v+cvbh)/ckbh))\n"
"\n"
"Parameters cah, cvah, ckah, cbh, cvbh, ckbh\n"
"are defined in the CONSTANT block.\n"
"\n"
"Laboratory for Neuronal Circuit Dynamics\n"
"RIKEN Brain Science Institute, Wako City, Japan\n"
"http://www.neurodynamics.brain.riken.jp\n"
"\n"
"Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602\n"
"Date of Implementation: April 2005\n"
"Contact: akemann@brain.riken.jp\n"
"\n"
"ENDCOMMENT\n"
"\n"
"\n"
"NEURON {\n"
" SUFFIX pcKv4\n"
" USEION k READ ek WRITE ik\n"
" RANGE gk, gbar, ik\n"
" GLOBAL ninf, taun, hinf, tauh\n"
"}\n"
"\n"
"UNITS {\n"
" (mV) = (millivolt)\n"
" (mA) = (milliamp)\n"
" (nA) = (nanoamp)\n"
" (pA) = (picoamp)\n"
" (S) = (siemens)\n"
" (nS) = (nanosiemens)\n"
" (pS) = (picosiemens)\n"
" (um) = (micron)\n"
" (molar) = (1/liter)\n"
" (mM) = (millimolar) \n"
"}\n"
"\n"
"CONSTANT {\n"
" q10 = 2.2\n"
"\n"
" can = 0.15743 (1/ms)\n"
" cvan = 57 (mV)\n"
" ckan = -32.19976 (mV)\n"
" cbn = 0.15743 (1/ms)\n"
" cvbn = 57 (mV)\n"
" ckbn = 37.51346 (mV)\n"
"\n"
" cah = 0.01342 (1/ms)\n"
" cvah = 60 (mV)\n"
" ckah = -7.86476 (mV)\n"
" cbh = 0.04477 (1/ms)\n"
" cvbh = 54 (mV)\n"
" ckbh = 11.3615 (mV)\n"
"}\n"
"\n"
"PARAMETER {\n"
" v (mV)\n"
" celsius (degC)\n"
" \n"
" gbar = 0.0039 (mho/cm2) <0,1e9>\n"
"}\n"
"\n"
"ASSIGNED {\n"
" ik (mA/cm2) \n"
" ek (mV)\n"
" gk (mho/cm2)\n"
" qt\n"
"\n"
" ninf\n"
" taun (ms)\n"
" alphan (1/ms)\n"
" betan (1/ms)\n"
"\n"
" hinf\n"
" tauh (ms)\n"
" alphah (1/ms)\n"
" betah (1/ms) \n"
"}\n"
"\n"
"STATE { n h }\n"
"\n"
"INITIAL {\n"
" qt = q10^((celsius-22 (degC))/10 (degC))\n"
" rates(v)\n"
" n = ninf\n"
" h = hinf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" gk = gbar * n^4 * h \n"
" ik = gk * (v - ek)\n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" rates(v)\n"
" n' = (ninf-n)/taun\n"
" h' = (hinf-h)/tauh \n"
"}\n"
"\n"
"PROCEDURE rates(v (mV)) {\n"
" alphan = alphanfkt(v)\n"
" betan = betanfkt(v)\n"
" ninf = alphan / (alphan+betan) \n"
" taun = 1 / (qt*(alphan + betan))\n"
" alphah = alphahfkt(v)\n"
" betah = betahfkt(v)\n"
" hinf = alphah / (alphah + betah)\n"
" tauh = 1 / (qt*(alphah + betah)) \n"
"}\n"
"\n"
"FUNCTION alphanfkt(v (mV)) (1/ms) {\n"
" alphanfkt = can * exp(-(v+cvan)/ckan) \n"
"}\n"
"\n"
"FUNCTION betanfkt(v (mV)) (1/ms) {\n"
" betanfkt = cbn * exp(-(v+cvbn)/ckbn)\n"
"}\n"
"\n"
"FUNCTION alphahfkt(v (mV)) (1/ms) {\n"
" alphahfkt = cah / (1+exp(-(v+cvah)/ckah))\n"
"}\n"
"\n"
"FUNCTION betahfkt(v (mV)) (1/ms) {\n"
" betahfkt = cbh / (1+exp(-(v+cvbh)/ckbh))\n"
"}\n"
;
#endif