COMMENT
Synaptic GABAergic mechanism
Reversal potential Egaba is changing according to [Cl-]i change (due to Cl- influx, which we hypothesize to be significant). Bicarbonate (HCO3) flows through the GABAR too, and therefore Egaba is also [HCO3]i/[HCO3]o -dependent
igaba = icl + ihco3 (we assume icl and ihco3 to be mutually independent)
The GABAa model file is based on Jedlicka et al., 2010; https://doi.org/10.1002/hipo.20804
ENDCOMMENT
TITLE Inhibitory synapse in the pyramidal cells (GABA_A) with changing Cl- concentration
NEURON {
POINT_PROCESS is_GABA
RANGE tau1, tau2, icl, ihco3, i, g, e, ehcl, ehco3, P
USEION cl READ cli, clo, ecl WRITE icl VALENCE -1
USEION hco3 READ hco3i, hco3o, ehco3 WRITE ihco3 VALENCE -1
}
PARAMETER {
tau1 = 2 (ms)
tau2 = 6 (ms)
P = 0.18 :HCO3/Cl relative permeability
}
UNITS {
FARADAY = 96485.309 (coul/mole)
R = (k-mole) (joule/degC)
(molar) = (1/liter)
(mM) = (millimolar)
(mV) = (millivolt)
}
ASSIGNED {
v (mV)
e (mV)
ecl (mV)
ehco3 (mV)
i (nanoamp)
icl (nanoamp)
ihco3 (nanoamp)
g (microsiemens)
factor
cli (mM)
clo (mM)
hco3i (mM)
hco3o (mM)
}
STATE {
A (microsiemens)
B (microsiemens)
}
INITIAL {
LOCAL tp
if (tau1/tau2 > .9999) {
tau1 = .9999*tau2
}
A = 0
B = 0
tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
factor = -exp(-tp/tau1) + exp(-tp/tau2)
factor = 1/factor
e = P*ehco3 + (1-P)*ecl
}
BREAKPOINT {
SOLVE state METHOD cnexp
g = B - A
icl = (1-P)*g*(v-ecl)
ihco3 = P*g*(v-ehco3)
i = icl + ihco3
e = P*ehco3 + (1-P)*ecl
}
DERIVATIVE state {
A' = -A/tau1
B' = -B/tau2
}
NET_RECEIVE(weight (microsiemens)) {
A = A + weight*factor
B = B + weight*factor
}