TITLE Persistent sodium current
NEURON {
SUFFIX nap
USEION na READ ena WRITE ina
RANGE gna, ina
}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(molar) = (1/liter)
(mM) = (millimolar)
PI = (pi) (1)
FARADAY = 96485.309 (coul/mole)
R = (k-mole) (joule/degC)
}
INDEPENDENT {t FROM 0 TO 1 WITH 100 (ms)}
PARAMETER {
gna = 0.0006 (mho/cm2)
}
ASSIGNED {
ena (mV)
v (mV)
ina (mA/cm2)
minf
hinf
taum (ms)
tauh (ms)
}
STATE { m h }
BREAKPOINT {
SOLVE state METHOD cnexp
ina = gna*m*m*h*(v-ena)
}
INITIAL {
rates(v)
m = minf
h = hinf
ina = gna*m*m*h*(v-ena)
}
DERIVATIVE state {
rates(v)
m' = (minf-m)/taum
h' = (hinf-h)/tauh
}
PROCEDURE rates(v (mV)) {
TABLE minf, hinf, taum, tauh
FROM -200 TO 200 WITH 201
minf = 1/(1+exp(-(v+48.7)/4.4))
hinf = 1/(1+exp((v+48.8)/9.98))
taum = 1/(0.091*(v+38)/(1-exp(-(v+38)/5))-0.062*(v+38)/(1-exp((v+38)/5)))
:The following function has been fitted to the data in Magistretti et al., 1999
if (v<=-60) {
tauh = 3700+2000*1/(0.091*(v+22+38)/(1-exp(-(v+22+38)/5))-0.062*(v+22+38)/(1-exp((v+22+38)/5)))
} else {
tauh = 1200+8000*1/(0.091*(v+36+38)/(1-exp(-(v+36+38)/5))-0.062*(v+36+38)/(1-exp((v+36+38)/5)))
}
}