strdef cmd, isomer
objref volt_cl // variable for Point-Process
objref vbox1, vbox2, vbox3, vbox4 // graphs variables
objref g_v, g_i1, g_i2, g_c // graphs variables
objref v_vec, nctr_vec, tr_vec // vectors for calculated graphs
v_vec = new Vector()
nctr_vec = new Vector()
tr_vec = new Vector()
y_min = -0.9
create soma
soma {
diam = 50 // micron
L = 63.66198 // micron, so that area = 10000 micron2
nseg = 1 // dimensionless
cm = 1 // uF/cm2
Ra = 70 // ohm-cm
volt_cl = new VClamp_plus(.5)
}
proc Clamp() {
volt_cl.amp[1]=$1 // mV
volt_cl.amp[0]=hold_pot
volt_cl.amp[2]=hold_pot
soma_curr_tr=0 // peak current value inizialization
finitialize(v_init)
pre_i = 0
while (t<tstop) {
dens=volt_cl.i/area(.5)*100-soma.i_cap(.5) // clamping current in mA/cm2
g_v.line(t, soma.v(.5))
g_v.flush()
g_i1.line(t, dens)
g_i1.flush()
if ((t>volt_cl.dur[0]) && (t<(volt_cl.dur[0]+volt_cl.dur[1]))) {
if (abs(dens)>abs(pre_i)) {
sprint(cmd, "%s%s", "soma_cond_tr=g_", isomer)
execute(cmd)
soma_curr_tr=dens
}
}
fadvance()
pre_i=dens
}
v_vec.append($1)
nctr_vec.append(soma_cond_tr)
tr_vec.append(soma_curr_tr)
doEvents()
}
// procedure for graph erasing
proc erase() {
g_v.erase(0)
g_i1.erase(0)
g_v.size(0, tstop, hold_pot-10, end_cl+10)
g_i1.size(0, tstop, y_min, 0.1)
g_v.beginline()
g_i1.beginline(2,1)
}
proc start() {
v_vec.resize(0)
nctr_vec.resize(0)
tr_vec.resize(0)
g_i2.erase(0)
g_i2.size(st_cl-20, end_cl+20, y_min, 0.1)
g_i2.beginline(2,1)
g_v.erase()
g_i1.erase()
g_v.size(0, tstop, hold_pot-10, end_cl+10)
g_i1.size(0, tstop, y_min, 0.1)
for (i=st_cl; i<=end_cl; i=i+incr1) {
erase()
Clamp(i)
tr_vec.line(g_i2,v_vec,2,1)
}
aa = nctr_vec.max()
for i=0, v_vec.size()-1 {
nctr_vec.x[i]=nctr_vec.x[i]/aa
}
g_c.erase()
g_c.size(st_cl,end_gr,0,1)
g_c.begin()
for i=0, v_vec.size()-1 { // reduces vectors for graphic to v=end_gr
if (v_vec.x[i]==end_gr) {
v_vec.resize(i)
nctr_vec.resize(i)
break
}
}
nctr_vec.line(g_c,v_vec,1,1)
g_c.flush()
doNotify()
}
proc change_isomer() {
num_to_strg(num_iso)
sprint (cmd, "%s %s", "uninsert", isomer)
execute(cmd)
num_to_strg(nw_num_iso)
sprint (cmd, "%s %s", "insert", isomer)
execute(cmd)
num_iso = nw_num_iso
}
proc num_to_strg() {
if ($1 == 1) {
isomer = "na11a"
y_min=-0.9
volt_cl.dur[0]=1
volt_cl.dur[1]=15
volt_cl.dur[2]=2
hold_pot=-120
tstop=18
end_gr=20
st_cl=-80
end_cl=60
}
if ($1 == 2) {
isomer = "na12a"
y_min=-0.9
volt_cl.dur[0]=1
volt_cl.dur[1]=10
volt_cl.dur[2]=2
hold_pot=-120
tstop=13
end_gr=20
st_cl=-80
end_cl=60
}
if ($1 == 3) {
isomer = "na13a"
y_min=-0.9
volt_cl.dur[0]=1
volt_cl.dur[1]=20
volt_cl.dur[2]=2
hold_pot=-90
tstop=23
end_gr=20
st_cl=-100
end_cl=60
}
if ($1 == 4) {
isomer = "na14a"
y_min=-0.8
volt_cl.dur[0]=1
volt_cl.dur[1]=12
volt_cl.dur[2]=2
hold_pot=-120
tstop=15
end_gr=20
st_cl=-80
end_cl=60
}
if ($1 == 5) {
isomer = "na15a"
y_min=-1.1
volt_cl.dur[0]=1
volt_cl.dur[1]=20
volt_cl.dur[2]=2
hold_pot=-120
tstop=23
end_gr=10
st_cl=-90
end_cl=60
}
if ($1 == 6) {
isomer = "na16a"
y_min=-1.7
volt_cl.dur[0]=1
volt_cl.dur[1]=7.5
volt_cl.dur[2]=2
hold_pot=-90
tstop=10.5
end_gr=10
st_cl=-80
end_cl=80
}
if ($1 == 7) {
isomer = "na17a"
y_min=-1.5
volt_cl.dur[0]=1
volt_cl.dur[1]=25
volt_cl.dur[2]=2
hold_pot=-140
tstop=28
end_gr=20
st_cl=-80
end_cl=60
}
if ($1 == 8) {
isomer = "na18a"
y_min=-1.1
volt_cl.dur[0]=5
volt_cl.dur[1]=50
volt_cl.dur[2]=5
hold_pot=-70
tstop=60
end_gr=50
st_cl=-80
end_cl=60
}
if ($1 == 9) {
isomer = "na19a"
y_min=-2.5
volt_cl.dur[0]=1
volt_cl.dur[1]=150
volt_cl.dur[2]=5
hold_pot=-120
tstop=106
end_gr=-10
st_cl=-100
end_cl=40
}
}
proc Tstop() {
tstop = volt_cl.dur[0]+volt_cl.dur[1]+volt_cl.dur[2]
}
access soma
num_iso = 1
nw_num_iso = num_iso
num_to_strg(num_iso)
sprint (cmd, "%s %s", "insert", isomer)
execute(cmd)
variable_domain("nw_num_iso", 1, 9)
{
xpanel("RunControl", 0)
v_init = -120
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 18
xvalue("t","t", 2 )
tstop = 18
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.0125
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
screen_update_invl = 0.05
xvalue("Scrn update invl","screen_update_invl", 1,"", 0, 1 )
realtime = 0.00999999
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(3,102)
}
{
xpanel("Avvio", 0)
xbutton("Avvio","start()")
celsius=22
xvalue("celsius")
ena=65
xvalue("ena")
xvalue("isomer (1-9)","nw_num_iso",1,"change_isomer()")
y_min = -0.9
xvalue("maximal current", "y_min")
st_cl=-80
xvalue("start clamp", "st_cl")
end_cl=60
xvalue("end clamp", "end_cl")
end_gr=20
xvalue("end graph", "end_gr")
incr1=1
volt_cl.dur[0]=1
xvalue("1st step dur", "volt_cl.dur[0]", 1, "Tstop()")
volt_cl.dur[1]=15
xvalue("2nd step dur", "volt_cl.dur[1]", 1, "Tstop()")
volt_cl.dur[2]=2
xvalue("3rd step dur", "volt_cl.dur[2]", 1, "Tstop()")
hold_pot=v_init
xvalue("holding_pot", "hold_pot")
xpanel(280,102)
}
// graph for soma voltage
vbox1=new VBox()
vbox1.intercept(1)
g_v=new Graph()
g_v.size(0, tstop, hold_pot-10, end_cl+10)
vbox1.intercept(0)
vbox1.map("Membrane voltage", 3, 500, -1, 0)
// graph for clamping current (clamp.i)
vbox2=new VBox()
vbox2.intercept(1)
g_i1=new Graph()
g_i1.size(0, tstop, y_min, 0.1)
vbox2.intercept(0)
vbox2.map("Soma clamp current", 520, 10, 500, 350)
// graph for peak current/voltage relationship
vbox3=new VBox()
vbox3.intercept(1)
g_i2=new Graph()
g_i2.size(st_cl, end_cl, y_min, 0.1)
vbox3.intercept(0)
vbox3.map("Peak current-voltage relation", 520, 400, 500, 350)
// graph for normalized conductance/voltage relatioship
vbox4=new VBox()
vbox4.intercept(1)
g_c=new Graph()
g_c.size(st_cl,end_gr,0,1)
vbox4.intercept(0)
vbox4.map("Normalized conductance (peak)", 1050, 10, 500, 350)