# -*- coding: utf-8 -*-
"""
Created on Fri Jan 24 15:14:41 2020
@author: daniel
"""
from mpi4py import MPI
import d1msn as msn
import plasticity_experiment as pe
import parameters as pp
import numpy as np
import pickle
import json
import scipy.signal as ss
import sys
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
nprocs = comm.Get_size()
print("Number of processes = %d" % nprocs)
print("Before opening model sets")
with open('D1_71bestFit_updRheob.pkl', 'rb') as f:
model_sets = pickle.load(f, encoding="latin1")
print("Before creating a cell")
cell_index = 34
alpha = int(sys.argv[1])*1e-3
variables = model_sets[cell_index]['variables']
cell = msn.MSN(variables = variables)
independent_dends = pp.independent_dends
cell.increase_dend_res(independent_dends, 5)
cell.insert_spines(independent_dends, pp.cluster_start_pos, pp.cluster_end_pos, num_spines = pp.plateau_cluster_size_max)
print("Created a cell")
on_spine = 1
add_spine = 0
vs_amps = []
vs_durs = []
vd_amps = []
vd_durs = []
vs_list = []
pp.alpha = alpha
if rank == 0:
# 2. Create tasks for the queue of tasks for parallel execution
tasks = []
# alphas = (np.arange(0.054,0.096,0.004)).tolist()
num_syns = (np.arange(1,21,1)).tolist()
trials = 50
for input_size in num_syns:
for trial in range(1, trials + 1):
for dend in independent_dends:
# for alpha in alphas:
# tasks.append([input_size, trial, dend, alpha])
tasks.append([input_size, trial, dend])
div, res = divmod(len(tasks), nprocs)
counts = [div + 1 if p < res else div for p in range(nprocs)]
# determine the starting and ending indices of each sub-task
starts = [sum(counts[:p]) for p in range(nprocs)]
ends = [sum(counts[:p+1]) for p in range(nprocs)]
tasks = [tasks[starts[p]:ends[p]] for p in range(nprocs)]
else:
tasks = None
tasks = comm.scatter(tasks, root=0)
for t in tasks:
cluster_size = t[0]; tr = t[1]; dend = t[2];
print("Running trial %d for alpha = %.3f on dendrite %d with %d clustered synapses." % (tr, alpha, dend, cluster_size))
vs = []
ex = pe.Plasticity_Experiment('record_ca', cell)
ex.insert_synapses('noise_SPN')
ex.insert_synapses('my_spillover', [dend], deterministic = 0,
num_syns = cluster_size, add_spine = add_spine, on_spine = on_spine)
ex.set_up_recording([dend])
ex.simulate()
tv = ex.tv.to_python()
t = ex.t.to_python()
vs.append(ex.vs.to_python())
vs_list.append(ex.vs.to_python()[int(pp.skip_first_x_ms*pp.nrn_dots_per_1ms):])
cell.esyn = []
ex.estim = []
ex.enc = []
cell.isyn = []
ex.istim = []
ex.inc = []
ex.exglusec = []
ex.exglu = []
ex.exnc = []
for s in cell.spines:
s.syn_on = 0
#
vs_indices = []; vs_widths = []
vd_indices = []; vd_widths = []
for v in vs:
vs_indices.append(ss.find_peaks(v))
vs_widths.append(ss.peak_widths(v, (vs_indices[-1])[0], rel_height = 0.15))
vs_durs.append([v[0][0] for v in vs_widths])
vs_amps.append([v[1][0] for v in vs_widths])
vs_durs = comm.gather(vs_durs, root = 0)
vs_amps = comm.gather(vs_amps, root = 0)
vs_list = comm.gather(vs_list, root = 0)
# 5. Calculate and plot results
if rank == 0:
res1 = []; res2 = [];
for vsa, vsd in zip(vs_amps, vs_durs):
res1.extend(vsa)
res2.extend(vsd)
vs_amps = res1; vs_durs = res2;
res = []
for v in vs_list:
res.extend(v)
vs_list = res
res_dict = {'num_syns': num_syns,
'trials': trials,
'independent_dends': independent_dends,
'vs_widths': vs_durs,
'vs_amps': vs_amps,
'vs': vs_list}
to_save = json.dumps(res_dict)
with open('./results/alpha/short_spillover_alpha_%.3f.dat' % alpha, 'w', encoding = 'utf-8') as f:
json.dump(to_save, f)