from neuron import h
from math import exp
import numpy as np
import json
import neuron_cls as n
import spine as sp
import parameters as p
mod = "./mod/"
params = "./params_dMSN.json"
morphology = "./morphology/MSN_morphology_D1.swc"
h.load_file('stdlib.hoc')
h.load_file('import3d.hoc')
h.nrn_load_dll(mod + 'x86_64/.libs/libnrnmech.so')
#h.nrn_load_dll('/pdc/vol/neuron/7.4-py27/x86_64/.libs/libnrnmech.so')
# ======================= the MSN class ==================================================
class MSN(n.Neuron):
def __init__(self, morphology = morphology, params = params, variables = None):
self.create_morphology()
self.insert_channels(variables)
self.esyn = []
self.isyn = []
self.spines = []
self.num_spines_on_dends = np.zeros(len(self.dendlist))
def create_morphology(self):
Import = h.Import3d_SWC_read()
Import.input(morphology)
imprt = h.Import3d_GUI(Import, 0)
imprt.instantiate(None)
h.define_shape()
self.create_sectionlists()
self.set_nsegs()
h.celsius = 35
self.v_init = -80
def insert_channels(self, variables = None):
self.dendritic_channels = [
"naf",
"kaf",
"kas",
"kdr",
"kir",
"cal12",
"cal13",
"can",
"car",
"cav32",
"cav33",
"sk",
"bk" ]
self.somatic_channels = [
"naf",
"kaf",
"kas",
"kdr",
"kir",
"cal12",
"cal13",
"can",
"car",
"sk",
"bk" ]
self.axonal_channels = [
"naf",
"kas",
"Im" ]
# Load ion channel parameters
with open(params) as file:
par = json.load(file)
for sec in self.somalist:
for mech in self.somatic_channels+["cadyn", "caldyn"]:
sec.insert(mech)
for sec in self.axonlist:
for mech in self.axonal_channels:
sec.insert(mech)
for sec in self.dendlist:
for mech in self.dendritic_channels+["cadyn", "caldyn", "cadyn_nmda"]:
sec.insert(mech)
sec.taur_cadyn_nmda = p.tau_cadyn_nmda
for sec in self.all:
sec.Ra = 150
sec.cm = 1.0
sec.insert('pas')
sec.g_pas = float(par['g_pas_all']['Value'])
sec.e_pas = -70 # -73
sec.ena = 50
sec.ek = -85 # -90
self.distribute_channels("soma", "gbar_naf", 0, 1, 0, 0, 0, float(par['gbar_naf_somatic']['Value']))
self.distribute_channels("soma", "gbar_kaf", 0, 1, 0, 0, 0, float(par['gbar_kaf_somatic']['Value']))
self.distribute_channels("soma", "gbar_kas", 0, 1, 0, 0, 0, float(par['gbar_kas_somatic']['Value']))
self.distribute_channels("soma", "gbar_kdr", 0, 1, 0, 0, 0, float(par['gbar_kdr_somatic']['Value']))
self.distribute_channels("soma", "gbar_bk", 0, 1, 0, 0, 0, float(par['gbar_bk_somatic' ]['Value']))
self.distribute_channels("soma", "pbar_cal12", 0, 1, 0, 0, 0, 1.34e-5)
self.distribute_channels("soma", "pbar_cal13", 0, 1, 0, 0, 0, 1.34e-6)
self.distribute_channels("soma", "pbar_car", 0, 1, 0, 0, 0, 1.34e-4)
self.distribute_channels("soma", "pbar_can", 0, 1, 0, 0, 0, 4e-5)
self.distribute_channels("dend", "gbar_kdr", 0, 1, 0, 0, 0, float(par['gbar_kdr_basal']['Value']))
self.distribute_channels("dend", "gbar_bk", 0, 1, 0, 0, 0, float(par['gbar_bk_basal' ]['Value']))
self.distribute_channels("dend", "pbar_cal12", 0, 1, 0, 0, 0, 1e-5)
self.distribute_channels("dend", "pbar_cal13", 0, 1, 0, 0, 0, 1e-6)
self.distribute_channels("dend", "pbar_car", 0, 1, 0, 0, 0, 1e-4)
self.distribute_channels("axon", "gbar_kas", 0, 1, 0, 0, 0, float(par['gbar_kas_axonal']['Value']))
self.distribute_channels("axon", "gbar_naf", 3, 1, 1.1, 30, 500, float(par['gbar_naf_axonal']['Value']))
#self.distribute_channels("axon", "gbar_naf", 1, 1, 0.1, 30, -1, float(par['gbar_naf_axonal']['Value']))
self.distribute_channels("axon", "gImbar_Im", 0, 1, 0, 0, 0, 1.0e-3)
if variables:
self.distribute_channels("dend", "gbar_naf", 1, 1.0-variables['naf'][1], \
variables['naf'][1], \
variables['naf'][2], \
variables['naf'][3], \
np.power(10,variables['naf'][0])*float(par['gbar_naf_basal']['Value']))
self.distribute_channels("dend", "gbar_kaf", 1, 1.0, \
variables['kaf'][1], \
variables['kaf'][2], \
variables['kaf'][3], \
np.power(10,variables['kaf'][0])*float(par['gbar_kaf_basal']['Value']))
self.distribute_channels("dend", "gbar_kas", 1, 0.1, \
0.9, \
variables['kas'][1], \
variables['kas'][2], \
np.power(10,variables['kas'][0])*float(par['gbar_kas_basal']['Value']))
self.distribute_channels("dend", "gbar_kir", 0, np.power(10,variables['kir'][0]), 0, 0, 0, float(par['gbar_kir_basal' ]['Value']))
self.distribute_channels("soma", "gbar_kir", 0, np.power(10,variables['kir'][0]), 0, 0, 0, float(par['gbar_kir_somatic']['Value']))
self.distribute_channels("dend", "gbar_sk", 0, np.power(10,variables['sk' ][0]), 0, 0, 0, float(par['gbar_sk_basal' ]['Value']))
self.distribute_channels("soma", "gbar_sk", 0, np.power(10,variables['sk' ][0]), 0, 0, 0, float(par['gbar_sk_somatic' ]['Value']))
self.distribute_channels("dend", "pbar_can", 1, 1.0-variables['can'][1], \
variables['can'][1], \
variables['can'][2], \
variables['can'][3], \
np.power(10,variables['can'][0]))
self.distribute_channels("dend", "pbar_cav32", 1, 0, \
1, \
variables['c32'][1], \
variables['c32'][2], \
np.power(10,variables['c32'][0]))
self.distribute_channels("dend", "pbar_cav33", 1, 0, \
1, \
variables['c33'][1], \
variables['c33'][2], \
np.power(10,variables['c33'][0]))
else:
self.distribute_channels("dend", "gbar_naf", 1, 0.1, 0.9, 60.0, 10.0, float(par['gbar_naf_basal']['Value']))
self.distribute_channels("dend", "gbar_kaf", 1, 1, 0.5, 120.0, -30.0, float(par['gbar_kaf_basal']['Value']))
#self.distribute_channels("dend", "gbar_kaf", 0, 1, 0, 0, 0, float(par['gbar_kaf_basal']['Value']))
self.distribute_channels("dend", "gbar_kas", 2, 1, 9.0, 0.0, -5.0, float(par['gbar_kas_basal']['Value']))
self.distribute_channels("dend", "gbar_kir", 0, 1, 0, 0, 0, float(par['gbar_kir_basal']['Value']))
self.distribute_channels("soma", "gbar_kir", 0, 1, 0, 0, 0, float(par['gbar_kir_somatic']['Value']))
self.distribute_channels("dend", "gbar_sk", 0, 1, 0, 0, 0, float(par['gbar_sk_basal']['Value']))
self.distribute_channels("soma", "gbar_sk", 0, 1, 0, 0, 0, float(par['gbar_sk_basal']['Value']))
self.distribute_channels("dend", "pbar_can", 0, 1, 0, 0, 0, 1e-7)
self.distribute_channels("dend", "pbar_cav32", 1, 0, 1.0, 120.0, -30.0, 1e-7)
self.distribute_channels("dend", "pbar_cav33", 1, 0, 1.0, 120.0, -30.0, 1e-8)
def create_sectionlists(self):
self.all = []
self.somalist = []
self.nsomasec = 0
self.axonlist = []
self.dendlist = []
for sec in h.allsec():
self.all.append(sec) # needs to be a keyword argument when used with h.SectionList()
if sec.name().find('soma') >= 0:
self.somalist.append(sec)
self.nsomasec += 1
if sec.name().find('axon') >= 0:
self.axonlist.append(sec)
if sec.name().find('dend') >= 0:
self.dendlist.append(sec)
def distribute_channels(self, as1, as2, d3, a4, a5, a6, a7, g8):
h.distance(sec=self.somalist[0])
for sec in self.all:
if sec.name().find(as1) >= 0:
for seg in sec:
dist = h.distance(seg.x, sec=sec)
val = self.calculate_distribution(d3, dist, a4, a5, a6, a7, g8)
cmd = 'seg.%s = %g' % (as2, val)
exec(cmd)
def distribute_channels_dend(self, as1, as2, d3, a4, a5, a6, a7, g8):
h.distance(sec=self.somalist[0])
for sec in as1:
for seg in self.dendlist[sec]:
dist = h.distance(seg.x, sec=self.dendlist[sec])
val = self.calculate_distribution(d3, dist, a4, a5, a6, a7, g8)
cmd = 'seg.%s = %g' % (as2, val)
exec(cmd)
def calculate_distribution(self, d3, dist, a4, a5, a6, a7, g8):
# d3 is the distribution type:
# 0 linear, 1 sigmoid, 2 exponential
# 3 step for absolute distance (in microns)
# dist is the somatic distance
# a4-a7 are distribution parameters
# g8 is the maximal conductance
if d3 == 0:
value = a4 + a5*dist
elif d3 == 1:
value = a4 + a5/(1 + exp((dist-a6)/a7) )
elif d3 == 2:
value = a4 + a5*exp((dist-a6)/a7)
elif d3 == 3:
if (dist > a6) and (dist < a7):
value = a4
else:
value = a5
if value < 0:
value = 0
value = value*g8
return value
def get_dendrites(self, distance_to_soma = 80):
distal_ind = []; proximal_ind = []; middle_ind = [];
for ind, dend in enumerate(self.dendlist):
if h.distance(0, sec = dend) >= distance_to_soma:
distal_ind.append(ind)
elif h.distance(1, sec = dend) <= distance_to_soma:
proximal_ind.append(ind)
else:
middle_ind.append(ind)
return distal_ind, proximal_ind, middle_ind
def insert_spines(self, section_list, start_pos, end_pos, num_spines = 20):
spine_step = 1.0/num_spines
for sec in section_list:
for i in range(0, num_spines):
pos = end_pos - (end_pos - start_pos)*i*spine_step
spine_name = 'spine_' + self.dendlist[sec].name() + '(' + str(pos) + ')'
s = sp.Spine(self.dendlist[sec], spine_name)
self.spines.append(s)
self.spines[-1].attach(self.dendlist[sec], pos, 0)
def delete_spines(self):
while self.spines != []:
for s in self.spines:
s.head = None
s.neck = None
self.spines.remove(s)
self.num_spines_on_dends = np.zeros(len(self.dendlist))