TITLE Glutamate-induced glutamate release (GIGR)
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(uM) = (micromolar)
}
NEURON {
POINT_PROCESS gigr
RANGE K2, K5, KX, KY, KZ, kc, kf, eps, V0, V1, VM2, VM3, V4, VM5
RANGE n, r1, r2, r3, ru, rb, V, B, Rmax, VmaxA, VmaxN, KN, KA, abg
RANGE x0, y0, z0, R0, Rin
}
PARAMETER {
K2 = 0.1 (uM)
K5 = 1.0 (uM)
Kd = 0.6 (uM)
KX = 0.3 (uM)
KY = 0.2 (uM)
KZ = 0.1 (uM)
kc = 0.166e-3 (/ms)
kf = 0.0166e-3 (/ms)
eps = 0.0166e-3 (/ms)
V0 = 0.033e-3 (uM/ms)
V1 = 0.033e-3 (uM/ms)
VM2 = 0.1e-3 (uM/ms)
VM3 = 0.333e-3 (uM/ms)
V4 = 0.0416e-3 (uM/ms)
VM5 = 0.5e-3 (uM/ms)
n = 10000
r1 = 1000e-3 (/uM /ms)
r2 = 100e-3 (/ms)
r3 = 4000e-3 (/ms)
ru = 100e-3 (/ms)
rb = 1e-10 (/uM^4 /ms)
V = 100000 (uM)
B = 1 (uM)
Rmax = 13287 (uM)
VmaxA = 510e-3 (uM/ms)
VmaxN = 1530e-3 (uM/ms)
KN = 2 (uM)
KA = 200 (uM)
x0 = 0
y0 = 0
z0 = 0
R0 = 0
Rin = 0
}
ASSIGNED {
v2
v3
v5
alpha
beta
gamma
abg
}
STATE { x y z R }
BREAKPOINT {
SOLVE states METHOD derivimplicit
}
INITIAL {
x = x0
y = y0
z = z0
R = R0
}
DERIVATIVE states {
LOCAL Rv
fluxes()
x' = V0 + V1*(R/Rmax) - v2 + v3 + kf*y -kc*x
y' = v2 - v3 - kf*y
z' = V4*(R/Rmax) - v5 - eps*z
abg = alpha*x^4/(beta + gamma*x^4)
Rv = abg - VmaxN*R/(R + KN) - VmaxA*R/(R + KA)
R' = Rv + Rin
}
PROCEDURE fluxes() {
UNITSOFF
v2 = VM2 * x^2/(K2^2 + x^2)
v3 = VM3 * x^4/(KX^4 + x^4) * y^2/(KY^2 + y^2) * z^4/(KZ^4 + z^4)
v5 = VM5 * z/(K5 + z) * x^2/(Kd^2 + x^2)
alpha = n*r1*r3*B*V
beta = (r2 + r3)*ru/rb
gamma = r2 + r3 + r1*B
UNITSON
}
NET_RECEIVE( rin ) {
R = R + rin
}
COMMENT
Glutamate-induced dlutamate release mechanism taken from [1].
[1] Larter R. and Glendening Craig M., Glutamate-induced glutamate release: A proposed mechanismfor calcium bursting in astrocytes, : Chaos: An Interdisciplinary Journal of Nonlinear Science 15, 047511 (2005); doi: 10.1063/1.2102467
ENDCOMMENT