TITLE Glutamatergic synapse with short-term plasticity
NEURON {
THREADSAFE
POINT_PROCESS glutamate_sat
RANGE tau1_ampa, tau2_ampa, tau1_nmda, tau2_nmda
RANGE g_ampa, g_nmda, i_ampa, i_nmda, weight_ampa, weight_nmda
RANGE e_ampa, e_nmda, g, i, q, mg
RANGE tau, tauR, tauF, U, u0
RANGE ca_ratio_ampa, ca_ratio_nmda
RANGE base, f_ampa, f_nmda
NONSPECIFIC_CURRENT i
USEION cal WRITE ical VALENCE 2
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
(mM) = (milli/liter)
}
PARAMETER {
tau1_ampa= 2.2 (ms)
tau2_ampa = 11.5 (ms) : tau2 > tau1
tau1_nmda= 5.63 (ms)
tau2_nmda = 320 (ms) : tau2 > tau1
weight_ampa = 0.1e-3 (uS)
weight_nmda = 1.0e-3 (uS)
e_ampa = 0 (mV)
e_nmda = 15 (mV)
tau = 3 (ms)
tauR = 100 (ms) : tauR > tau
tauF = 0 (ms) : tauF >= 0 (org: 800 ms)
U = 0.3 (1) <0, 1>
u0 = 0 (1) <0, 1>
ca_ratio_ampa = 0.005
ca_ratio_nmda = 0.1
mg = 1 (mM)
q = 2
base = 0.0 : set in simulation file
f_ampa = 0.0 : set in simulation file
f_nmda = 0.0 : set in simulation file
}
ASSIGNED {
v (mV)
i (nA)
i_ampa (nA)
i_nmda (nA)
ical (nA)
ical_ampa (nA)
ical_nmda (nA)
g (uS)
g_ampa (uS)
g_nmda (uS)
factor_ampa
factor_nmda
x
}
STATE {
A_ampa (uS)
B_ampa (uS)
A_nmda (uS)
B_nmda (uS)
}
INITIAL {
LOCAL tp_ampa, tp_nmda
A_ampa = 0
B_ampa = 0
tp_ampa = (tau1_ampa*tau2_ampa)/(tau2_ampa-tau1_ampa) * log(tau2_ampa/tau1_ampa)
factor_ampa = -exp(-tp_ampa/tau1_ampa) + exp(-tp_ampa/tau2_ampa)
factor_ampa = 1/factor_ampa
tau1_ampa = tau1_ampa
tau2_ampa = tau2_ampa
A_nmda = 0
B_nmda = 0
tp_nmda = (tau1_nmda*tau2_nmda)/(tau2_nmda-tau1_nmda) * log(tau2_nmda/tau1_nmda)
factor_nmda = -exp(-tp_nmda/tau1_nmda) + exp(-tp_nmda/tau2_nmda)
factor_nmda = 1/factor_nmda
tau1_nmda = tau1_nmda
tau2_nmda = tau2_nmda
}
BREAKPOINT {
LOCAL itotal, mggate
SOLVE state METHOD cnexp
mggate = 1 / (1 + exp(-0.062 (/mV) * v) * (mg / 3.57 (mM)))
g_ampa = B_ampa - A_ampa
itotal = g_ampa*(v - e_ampa)
ical_ampa = ca_ratio_ampa*itotal
i_ampa = itotal - ical_ampa
g_nmda = B_nmda - A_nmda
itotal = g_nmda*(v - e_nmda)*mggate
i_nmda = itotal - ical_nmda
ical = ical_ampa + ical_nmda
i = i_ampa + i_nmda
g = g_ampa + g_nmda
}
DERIVATIVE state {
A_ampa' = -A_ampa*q/tau1_ampa
B_ampa' = -B_ampa*q/tau2_ampa
A_nmda' = -A_nmda*q/tau1_nmda
B_nmda' = -B_nmda*q/tau2_nmda
}
NET_RECEIVE(weight (uS), y, z, u, tsyn (ms)) {
INITIAL {
y = 0
z = 0
u = u0
tsyn = t
}
z = z*exp(-(t-tsyn)/tauR)
z = z + (y*(exp(-(t-tsyn)/tau) - exp(-(t-tsyn)/tauR)) / (tau/tauR - 1) )
y = y*exp(-(t-tsyn)/tau)
x = 1-y-z
if (tauF > 0) {
u = u*exp(-(t-tsyn)/tauF)
u = u + U*(1-u)
} else {
u = U
}
A_ampa = A_ampa + weight_ampa*factor_ampa*u
B_ampa = B_ampa + weight_ampa*factor_ampa*u
A_nmda = A_nmda + weight_nmda*factor_nmda*u
B_nmda = B_nmda + weight_nmda*factor_nmda*u
y = y + x*u
tsyn = t
}
COMMENT
Implementation of glutamatergic synapse model with short-term facilitation
and depression based on modified tmgsyn.mod [1] by Tsodyks et al [2].
Choice of time constants and calcium current model follows [3].
NEURON implementation by Alexander Kozlov <akozlov@kth.se>.
[1] tmgsyn.mod, ModelDB (https://senselab.med.yale.edu/ModelDB/),
accession number 3815.
[2] Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent
networks with frequency-dependent synapses. J Neurosci. 20(1):RC50.
[3] Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M,
O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions
and entrainment to oscillations in a computational model of the nucleus
accumbens medium spiny projection neuron. J Neurosci 25(40):9080-95.
ENDCOMMENT