function betas_plot(s, display_power)
len = length (s.data);
numcoefs = length (s.wvstruct.dwt);
figure
%Plot a comparison fft and the betas power spectra
if display_power == 1
subplot(211);
%Plot Wavelet Spectrum
loglog ((s.fft.wvf), (abs(s.fft.wvfft_val.^2)), 'b'); hold on;
h3 = loglog ((s.fft.wvf(s.fft.wvfitlist)),(abs(s.fft.wvfft_val(s.fft.wvfitlist)).^2),'g:'); hold on; %Plots the region of the spectrum we're fitting to
title('Power Spectrum (datafilt)');
xlabel ('freq (hz)')
% Plot linear best fit
temp = length(s.fft.wvf);
wvfitlist = s.fft.wvfitlist;
p = [s.general_beta_est.wvbeta_est s.general_beta_est.wvconst_est]; %New format
h4 = loglog((s.fft.wvf(min(wvfitlist):temp)), (10^p(2) * s.fft.wvf(min(wvfitlist):temp).^p(1)), 'm');
legend ([h3 h4], ['Wavelet Spectrum'],['Fit slope = ' num2str(p(1),'%1.2f')], 'location', 'NorthWest');
subplot(212);
end
%Plot the betas
bar (fliplr(s.betas.b(2,2:size(s.betas.b,2))));
%Add text and axis labels
for i = 2:numcoefs
%Calculate frequencies and store in array to be placed along x-axis
%xlabel_arr(i-1) = {[num2str(1/(2^(i-1))/s.dt1,'%1.1f') '-' num2str(1/(2^i)/s.dt1,'%1.1f')]};
xlabel_arr(i-1) = {[num2str(1/(2^i)/s.dt1,'%1.1f')]};
%Also draw in the scales
ypos = max(s.betas.b(2,2:size(s.betas.b,2))) * 1;
%text(numcoefs-(i-1)-.5, ypos, ['Scl' num2str(2^(i-1)) '-' num2str(2^i)],'FontSize',8);
text(numcoefs-(i-1)-.5, ypos, ['Scl' num2str(2^(i-1))],'FontSize',8);
end
xlabel_arr = fliplr (xlabel_arr);
set(gca,'XTick',1:numcoefs-1)
set(gca,'XTickLabel',xlabel_arr, 'FontSize', 8)
title('Multiscale Exponents (data)');
xlabel ('Hz');
end