function s = zero_cross (s)
format compact;
dt = s.datatimes(2) - s.datatimes(1);
s.datafilt_nobase = remove_baseline_avg (s.datatimes, s.datafilt, 30);
s.datafilt_lowpass = s.datafilt_nobase; s.datatimes_lowpass = s.datatimes;
% s.datafilt_lowpass = qif (s.datatimes, s.datafilt_nobase, [150 5000]); s.datatimes_lowpass = s.datatimes;
[s.datatimes_lowpass s.datafilt_lowpass] = lowpass_avg (s.datatimes, s.datafilt_nobase, 150);
% s.data_diff = diff(s.datafilt_lowpass);
% s.datatimes_diff = s.datatimes (1:length(s.data)-1);
figure; hold on;
num = 1:length(s.data);
% plot (dt * num, s.data - mean(s.data), 'b'); hold on;
% plot (dt * wkeep(num, length(s.datafilt_nobase), 'c'), s.datafilt_nobase, 'g:');
plot (dt * wkeep(num, length(s.datafilt_lowpass), 'c'), s.datafilt_lowpass - mean(s.datafilt_lowpass), 'r');
plot (dt * num, 0 + zeros(1, length(num)), 'k');
legend('unfiltered', 'baseline removed', 'nobase+lowpass filter');
tr = 0.0:0.02:0.22; %threshold range
% mir = 0.01:0.01:0.02; %minimium interval range
% tr = 0.7;
mir = 0.001;
if length(mir) > 1
dmir = mir(2) - mir(1);
dtr = tr(2) - tr(1);
amat = zeros(length(tr), length(mir));
end
for min_int = mir
a = [];
for thresh = tr
thresh;
ints = down_up_ints (s.datatimes_lowpass, s.datafilt_lowpass, thresh);
% ints = down_up_ints (s.datatimes_diff, s.data_diff, thresh);
% ints = gamrnd(2,2,1,50000);
ints = ints(find(ints>min_int));
% Histogram
IQR = iqr(ints);
len = length(ints);
% % Sturges' Formula
% nbins = log2(len) + 1;
% spacing = (max(ints) - min(ints)) / nbins;
% % Scott Rule
% spacing = 3.5*std(ints)*len^(-1/3); % Estimate the appropriate number of bins
% nbins = ceil ((max(ints) - min(ints))/spacing); % using Freedman-Draconis ruls
% Friedman Diaconis Rule
spacing = 2*IQR*len^(-1/3); % Estimate the appropriate number of bins
nbins = ceil ((max(ints) - min(ints))/spacing); % using Freedman-Draconis ruls
sp = max(dt, spacing);
sp
[nhist binloc] = hist(ints, min(ints):sp:max(ints));
% binloc = min(ints):dt:max(ints);
% [nhist binloc] = hist(ints, binloc);
thresh
min_int
[coefs resnorm] = fit_gamma2 (ints, binloc, nhist);
figure; h1 = plot (binloc, nhist,'b.');
hold on;
h2 = plot (binloc, gamma_pdf2 ([coefs(1:2) coefs(6)], binloc), 'r');
h3 = plot (binloc, coefs(4) * gampdf (binloc, coefs(2), coefs(3)), 'g:');
legend ([h1 h2], ['thresh=' num2str(thresh) ' mint=' num2str(min_int)] ,['a=' num2str(coefs(2)) ' b=' num2str(coefs(3)) ' max=' num2str(coefs(4)) ' err=' num2str(resnorm)]);
% Make a array (old code, 1d)
a = [a coefs(2)];
% Make a matrix (2d)
if length(mir) > 1
miindex = round((min_int-min(mir))/dmir + 1);
trindex = round((thresh-min(tr))/dtr + 1);
amat(trindex, miindex) = coefs(2);
end
end
s.alpha = coefs(1);
s.ints = ints;
if length(a) > 1
figure; bar(tr, a);
xdiff = max(tr) - min(tr);
ydiff = max(a) - min(a);
axis ([(min(tr)-0.25*xdiff) (max(tr)+0.25*xdiff) min(0.8, min(a)-0.25*ydiff) max(a)]);
end
end
if length(mir)>1
s.amat = amat;
imagesc (mir, tr, amat);
end
end
function data_nobase = remove_baseline_avg (datatimes, data, filt_freq)
% Set constants
filt_time = 1/filt_freq;
dt = datatimes(2) - datatimes(1);
len = length (data);
% Design filter
filt_size = round(filt_time / dt);
filt_size = round(filt_size/2)*2 + 1; %Make filter size an odd number
filt = ones(1, filt_size) / filt_size;
% Pad dataset
to_pad = (filt_size - 1)/2;
l_padded_value = mean(data(1:to_pad));
r_padded_value = mean(data((len-to_pad+1):len));
data_padded = [(l_padded_value*ones(1,to_pad)) data' (r_padded_value*ones(1,to_pad))]';
baseline = conv (data_padded, filt);
baseline = wkeep (baseline, len, 'c');
data_nobase = data - baseline;
% figure; plot (datatimes(1:length(data)), data - mean(data), 'b'); hold on;
% plot (datatimes(1:length(data)), baseline - mean(data), 'r');
% plot (datatimes(1:length(data)), data_nobase, ':g');
end
function [times lowpass] = lowpass_avg (datatimes, data, filt_freq)
% Set constants
filt_time = 1/filt_freq;
dt = datatimes(2) - datatimes(1);
len = length (data);
% Design filter
filt_size = round(filt_time / dt);
filt = ones(1, filt_size) / filt_size;
% Apply filter
fout = conv (data, filt);
lkeep = len - filt_size;
lowpass = wkeep (fout, lkeep, 'c');
times = (0:lkeep-1)*dt;
end
function ints = crossing_intervals (t, x, thresh)
x = x - thresh;
dt = t(2) - t(1);
N = length(x);
x_sign = ( x >= 0 ) - ( x < 0 );
zc_list = (x_sign(1:N-1) - x_sign(2:N));
zc_indices = find (zc_list ~= 0);
ints = diff (zc_indices);
ints = ints * dt;
end
function ints = down_up_ints (t, x, thresh)
x = x - thresh;
dt = t(2) - t(1);
N = length(x);
x_sign = ( x >= 0 ) - ( x < 0 );
zc_list = (x_sign(1:N-1) - x_sign(2:N));
downup_indicies = find (zc_list == -2);
ints = diff (downup_indicies);
ints = ints * dt;
end