function s = zero_cross_ISI (s)
format compact;
dt = s.datatimes(2) - s.datatimes(1);
datafilt_lowpass = qif (s.datatimes, s.datafilt, [0 1]); datatimes_lowpass = s.datatimes;
[datatimes_lowpass datafilt_lowpass] = lowpass_avg (s.datatimes, datafilt_lowpass, 100);
% s.data_diff = diff(datafilt_lowpass);
% s.datatimes_diff = s.datatimes (1:length(s.data)-1);
% tr = 0.0:0.02:0.22; %threshold range
% mir = 0.01:0.01:0.02; %minimium interval range
lpstd = std(datafilt_lowpass);
% tr = 1.1 * lpstd;
tr = 0.65; % This value seems to work great for ic7gap and ic7gapsyn. Can decrease lowpass filter freq
mir = 0.000001;
figure; hold on;
ds = 5;
num = 1:length(datafilt_lowpass);
plotds (s.datatimes, s.data - mean(s.data), 'b', ds); hold on;
% plot (dt * wkeep(num, length(s.datafilt_nobase), 'c'), s.datafilt_nobase, 'g:');
plotds ( datatimes_lowpass, datafilt_lowpass - mean(datafilt_lowpass), 'r', ds);
plotds (dt * num, tr + zeros(1, length(num)), 'k', ds);
legend('unfiltered', 'filtered', ['stdev=' num2str(lpstd)]);
% return;
if length(mir) > 1
dmir = mir(2) - mir(1);
dtr = tr(2) - tr(1);
amat = zeros(length(tr), length(mir));
end
for min_int = mir
a = [];
for thresh = tr
thresh;
[ints EPSPamps indicies] = down_up_ints (datatimes_lowpass, datafilt_lowpass, thresh);
% ints = down_up_ints (s.datatimes_diff, s.data_diff, thresh);
% ints = gamrnd(2,2,1,50000);
keeping = find(ints>min_int);
ints = ints(keeping);
indicies = indicies(keeping+1);
EPSPamps = EPSPamps(keeping);
hold on; plot(s.datatimes(indicies),tr*ones(length(indicies),1),'r*');
% EPSP Amplitude Histogram
IQR = iqr(EPSPamps);
len = length(EPSPamps);
% Friedman Diaconis Rule
spacing = 2*IQR*len^(-1/3); % Estimate the appropriate number of bins
nbins = ceil ((max(EPSPamps) - min(EPSPamps))/spacing); % using Freedman-Draconis ruls
sp = spacing;
[epsp_hist epsp_bins] = hist(EPSPamps, min(EPSPamps):sp:(max(EPSPamps)));
figure; h1 = bar (epsp_bins, epsp_hist,'b');
% ISI Times Histogram
IQR = iqr(ints);
len = length(ints);
% % Sturges' Formula
% nbins = log2(len) + 1;
% spacing = (max(ints) - min(ints)) / nbins;
% % Scott Rule
% spacing = 3.5*std(ints)*len^(-1/3); % Estimate the appropriate number of bins
% nbins = ceil ((max(ints) - min(ints))/spacing); % using Freedman-Draconis ruls
% Friedman Diaconis Rule
spacing = 2*IQR*len^(-1/3); % Estimate the appropriate number of bins
nbins = ceil ((max(ints) - min(ints))/spacing); % using Freedman-Draconis ruls
sp = max(dt, spacing);
[nhist binloc] = hist(ints, min(ints):sp:max(ints));
fprintf ('Thresh = %g; min_int = %g\n',thresh,min_int);
[coefs resnorm] = fit_poisson (ints, binloc, nhist);
[area_under_curve resnorm2] = fit_poisson_scale (ints, binloc, nhist);
% area_under_curve = sum(nhist)*sp;
figure; h1 = bar (binloc, nhist,'b'); hold on;
plot (binloc, area_under_curve*exppdf(binloc, mean(ints)),'g');
h2 = plot (binloc, poisson_exp ([coefs(1) coefs(6)], binloc), 'r');
legend (['thresh=' num2str(thresh) ' mint=' num2str(min_int) 'mean=' num2str(mean(ints))] ,['a=' num2str(coefs(2)) ' b=' num2str(coefs(3)) ' max=' num2str(coefs(4)) ' err=' num2str(resnorm)]);
% Make a array (old code, 1d)
a = [a coefs(2)];
% Make a matrix (2d)
if length(mir) > 1
miindex = round((min_int-min(mir))/dmir + 1);
trindex = round((thresh-min(tr))/dtr + 1);
amat(trindex, miindex) = coefs(2);
end
end
if length(a) > 1
figure; bar(tr, a);
xdiff = max(tr) - min(tr);
ydiff = max(a) - min(a);
axis ([(min(tr)-0.25*xdiff) (max(tr)+0.25*xdiff) min(0.8, min(a)-0.25*ydiff) max(a)]);
end
end
if length(mir)>1
s.amat = amat;
imagesc (mir, tr, amat);
end
end
function [times lowpass] = lowpass_avg (datatimes, data, filt_freq)
% Set constants
filt_time = 1/filt_freq;
dt = datatimes(2) - datatimes(1);
len = length (data);
% Design filter
filt_size = round(filt_time / dt);
filt = ones(1, filt_size) / filt_size;
% Apply filter
fout = conv (data, filt);
lkeep = len - filt_size;
lowpass = wkeep (fout, lkeep, 'c');
times = (0:lkeep-1)*dt;
end
function [ints zc_indices] = crossing_intervals (t, x, thresh)
x = x - thresh;
dt = t(2) - t(1);
N = length(x);
x_sign = ( x >= 0 ) - ( x < 0 );
zc_list = (x_sign(1:N-1) - x_sign(2:N));
zc_indices = find (zc_list ~= 0);
ints = diff (zc_indices);
ints = ints * dt;
end
function [ints ISIamps downup_indicies] = down_up_ints (t, x, thresh)
x = x - thresh;
dt = t(2) - t(1);
N = length(x);
x_sign = ( x >= 0 ) - ( x < 0 );
zc_list = (x_sign(1:N-1) - x_sign(2:N));
downup_indicies = find (zc_list == -2);
ints = diff (downup_indicies);
ints = ints * dt;
ISIamps = [];
x = x + thresh;
for i = 1:length(downup_indicies)-1
ISIamps = [ISIamps max(x(downup_indicies(i):downup_indicies(i+1)))];
end
end
function [coefs_out resnorm_out] = fit_poisson (data, binloc, nhist)
global sig
global C_scale
global b_scale
% sig = sqrt(alpha) * beta
% C = Cprime * C_scale
sig = std(data);
% Note: variance = alpha*beta^2, so we only need to fit 2
% parameters
a0 = 1;
C0 = (binloc(2) - binloc(1)) * sum(nhist); %Set the constant multiplier to be equal to the integrated area of our data
b0 = sig;
Cprime0 = a0;
bprime = a0;
C_scale = C0 / Cprime0;
b_scale = b0 / bprime;
coefs_out0 = [Cprime0 bprime];
options = optimset ('MaxFunEvals', 5000, 'TolFun', 0.000001);
[coefs_out resnorm_out] = lsqcurvefit(@poisson_exp, coefs_out0, binloc, nhist, -Inf, Inf, options);
a = 1;
bprime = coefs_out(2);
b = bprime * b_scale;
Cprime = coefs_out(1);
C = Cprime * C_scale;
coefs_out = [Cprime a b C C_scale bprime b_scale];
end
function f = poisson_exp(coefs, x)
global sig
global C_scale
global b_scale
% sig = sqrt(alpha) * beta
% C = Cprime * C_scale
C = coefs(1) * C_scale;
a = 1;
b = coefs(2) * b_scale;
% b = sig/sqrt(a);
f = C * 1/((b^a)*gamma(a)) * x.^(a-1).*exp(-x/b);
end
function [C_scale resnorm_out] = fit_poisson_scale (data, binloc, nhist)
global lambda
global C_scale
global b_scale
% lambda = sqrt(alpha) * beta
% C = Cprime * C_scale
lambda = mean(data);
% Note: variance = alpha*beta^2, so we only need to fit 2
% parameters
a0 = 1;
C0 = (binloc(2) - binloc(1)) * sum(nhist); %Set the constant multiplier to be equal to the integrated area of our data
b0 = lambda;
Cprime0 = a0;
bprime = a0;
C_scale = C0 / Cprime0;
b_scale = b0 / bprime;
coefs_out0 = [Cprime0];
options = optimset ('MaxFunEvals', 5000, 'TolFun', 0.000001);
[coefs_out resnorm_out] = lsqcurvefit(@poisson_default_sig, coefs_out0, binloc, nhist, -Inf, Inf, options);
a = 1;
b = lambda;
Cprime = coefs_out(1);
C = Cprime * C_scale;
% coefs_out = [Cprime a b C C_scale bprime b_scale];
C_scale = C;
end
function f = poisson_default_sig (coefs, x)
global lambda
global C_scale
global b_scale
% lambda = sqrt(alpha) * beta
% C = Cprime * C_scale
C = coefs(1) * C_scale;
a = 1;
b = lambda;
% b = lambda/sqrt(a);
f = C * 1/((b^a)*gamma(a)) * x.^(a-1).*exp(-x/b);
end