package swcparts; import java.util.Random; public class GammaDist { //from "Algorithm from Numerical Recipes in C", Second Ed. public double GetGammaAL(double a, double lambda, Random globalRand) { if (Double.isInfinite(a) || Double.isInfinite(a)) { System.out.println( " Infinite input to GammaDist. a = " + a + " lambda = " + lambda); System.exit( -9); } double aa = -1.0, aaa = -1.0, b = 0, c = 0, d = 0, e = 0, r = 0, s = 0, si = 0, ss = 0, q0 = 0, q1 = 0.0416666664, q2 = 0.0208333723, q3 = 0.0079849875, q4 = 0.0015746717, q5 = -0.0003349403, q6 = 0.0003340332, q7 = 0.0006053049, q8 = -0.0004701849, q9 = 0.0001710320, a1 = 0.333333333, a2 = -0.249999949, a3 = 0.199999867, a4 = -0.166677482, a5 = 0.142873973, a6 = -0.124385581, a7 = 0.110368310, a8 = -0.112750886, a9 = 0.104089866, e1 = 1.000000000, e2 = 0.499999994, e3 = 0.166666848, e4 = 0.041664508, e5 = 0.008345522, e6 = 0.001353826, e7 = 0.000247453; double gds, p, q, t, sign_u, u, v, w, x; double v1, v2, v12; if (a <= 0.0) { return ( -1.0); } if (lambda <= 0.0) { return ( -1.0); } if (a < 1.0) { // CASE A: Acceptance rejection algorithm gs b = 1.0 + 0.36788794412 * a; // Step 1 for (; ; ) { p = b * globalRand.nextDouble(); if (p <= 1.0) { // Step 2. Case gds <= 1 gds = Math.exp(Math.log(p) / a); if (Math.log(globalRand.nextDouble()) <= -gds) { if (Double.isNaN(gds / lambda)) { System.out.println( "Gamma distribution function NaN error at point 1"); System.exit(9); } return (gds / lambda); } } else { // Step 3. Case gds > 1 gds = -Math.log( (b - p) / a); if (Math.log(globalRand.nextDouble()) <= ( (a - 1.0) * Math.log(gds))) { if (Double.isNaN(gds / lambda)) { System.out.println( "Gamma distribution function NaN error at point 2"); System.exit(9); } return (gds / lambda); } } } } else { // CASE B: Acceptance complement algorithm gd if (a != aa) { // Step 1. Preparations aa = a; ss = a - 0.5; s = Math.sqrt(ss); d = 5.656854249 - 12.0 * s; } // Step 2. Normal deviate do { v1 = 2.0 * globalRand.nextDouble() - 1.0; v2 = 2.0 * globalRand.nextDouble() - 1.0; v12 = v1 * v1 + v2 * v2; } while (v12 > 1.0); t = v1 * Math.sqrt( -2.0 * Math.log(v12) / v12); x = s + 0.5 * t; gds = x * x; if (t >= 0.0) { if (Double.isNaN(gds / lambda)) { System.out.println("Gamma distribution function NaN error at point 3."); System.exit(9); } return (gds / lambda); // Immediate acceptance } u = globalRand.nextDouble(); // Step 3. Uniform random number if (d * u <= t * t * t) { if (Double.isNaN(gds / lambda)) { System.out.println("Gamma distribution function NaN error at point 4"); System.exit(9); } return (gds / lambda); // Squeeze acceptance } if (a != aaa) { // Step 4. Set-up for hat case aaa = a; r = 1.0 / a; q0 = ( ( ( ( ( ( ( (q9 * r + q8) * r + q7) * r + q6) * r + q5) * r + q4) * r + q3) * r + q2) * r + q1) * r; if (a > 3.686) { if (a > 13.022) { b = 1.77; si = 0.75; c = 0.1515 / s; } else { b = 1.654 + 0.0076 * ss; si = 1.68 / s + 0.275; c = 0.062 / s + 0.024; } } else { b = 0.463 + s - 0.178 * ss; si = 1.235; c = 0.195 / s - 0.079 + 0.016 * s; } } if (x > 0.0) { // Step 5. Calculation of q v = t / (s + s); // Step 6. if (Math.abs(v) > 0.25) { q = q0 - s * t + 0.25 * t * t + (ss + ss) * Math.log(1.0 + v); } else { q = q0 + 0.5 * t * t * ( ( ( ( ( ( ( (a9 * v + a8) * v + a7) * v + a6) * v + a5) * v + a4) * v + a3) * v + a2) * v + a1) * v; } // Step 7. Quotient acceptance if (Math.log(1.0 - u) <= q) { if (Double.isNaN(gds / lambda)) { System.out.println("Gamma distribution function NaN error at point 5"); System.exit(9); } return (gds / lambda); } } for (; ; ) { // Step 8. Double exponential deviate t do { e = -Math.log(globalRand.nextDouble()); u = globalRand.nextDouble(); u = u + u - 1.0; sign_u = (u > 0) ? 1.0 : -1.0; t = b + (e * si) * sign_u; } while (t <= -0.71874483771719); // Step 9. Rejection of t v = t / (s + s); // Step 10. New q(t) if (Math.abs(v) > 0.25) { q = q0 - s * t + 0.25 * t * t + (ss + ss) * Math.log(1.0 + v); } else { q = q0 + 0.5 * t * t * ( ( ( ( ( ( ( (a9 * v + a8) * v + a7) * v + a6) * v + a5) * v + a4) * v + a3) * v + a2) * v + a1) * v; } if (q <= 0.0) { continue; // Step 11. } if (q > 0.5) { w = Math.exp(q) - 1.0; } else { w = ( ( ( ( ( (e7 * q + e6) * q + e5) * q + e4) * q + e3) * q + e2) * q + e1) * q; } // Step 12. Hat acceptance if (c * u * sign_u <= w * Math.exp(e - 0.5 * t * t)) { x = s + 0.5 * t; if (Double.isNaN(x * x / lambda)) { System.out.println("Gamma distribution function NaN error at point 6"); System.exit(9); } return (x * x / lambda); } } } } public double GetGammaAB(double alpha, double beta, Random globalRand) { double lambda = 1 / beta; return GetGammaAL(alpha, lambda, globalRand); } public double GetGammaMS(double mean, double stdev, Random globalRand) { if (stdev <= 0) { return mean; } double variance = stdev * stdev; double lambda = 1 / (variance / mean); double alpha = mean * mean / variance; return GetGammaAL(alpha, lambda, globalRand); } public static int getCurveType(double[] realData, int length, Random globalRand) { if (length <= 2) { // System.out.println(" length less than 2"); return 1; } double[] uniformToTest = new double[length+1]; double[] gaussianToTest = new double[length+1]; double[] gammaToTest = new double[length+1]; GammaDist gd = new GammaDist(); double uniformDiff = 0; double gammaDiff = 0; double gaussianDiff = 0; double realMin = realData[1]; double realMax = 0; double realStdev = 0; double realMean = 0; double realSymetricMax = 0; double realSum = 0; double diffSqSum = 0; for (int i = 1; i <= length; i++) { //for each array element realSum += realData[i]; //find sum if (realMax < realData[i]) { //find max realMax = realData[i]; } if (realMin > realData[i]) { //find min realMin = realData[i]; } } java.util.Arrays.sort(realData,1,length+1); if (realMin == realMax) { // System.out.println(" min = max"); return 1; } realMean = realSum / length; if ( (realMin >= realMean) || (realMax <= realMean)) { System.out.println( "mean in function getCurveType is outside range, possible infinite loop. Min, Mean, Max: " + realMin + " " + realMean + " " + realMax); System.exit(11); } //find stdev of real data for (int i = 1; i <= length; i++) { diffSqSum += ( (realData[i] - realMean) * (realData[i] - realMean)); } if ( (diffSqSum == 0) || (length <= 2)) { realStdev = 0; } else { realStdev = java.lang.Math.sqrt(diffSqSum / (length - 1)); } if (realStdev <= 0) { // System.out.println(" stdev less than 0"); return 1; } realSymetricMax = ( (realMean * 2) - realMin); //populate three new double arrays with sampled data, sort them for (int i = 1; i <= length; i++) { //uniform uniformToTest[i] = (globalRand.nextDouble() * (realSymetricMax - realMin) + realMin); //gaussian gaussianToTest[i] = realMin - 1; while ( (gaussianToTest[i] < realMin) || (gaussianToTest[i] > realSymetricMax)) { gaussianToTest[i] = (globalRand.nextGaussian() * realStdev) + realMean; } //gamma gammaToTest[i] = realMin - 1; while ( (gammaToTest[i] < realMin) || (gammaToTest[i] > realMax)) { gammaToTest[i] = (gd.GetGammaMS(realMean, realStdev, globalRand)); } } java.util.Arrays.sort(uniformToTest,1,length+1); java.util.Arrays.sort(gaussianToTest,1,length+1); java.util.Arrays.sort(gammaToTest,1,length+1); //find least mean squares between real and sampled for (int i = 1; i < length; i++) { uniformDiff += ( (realData[i] - uniformToTest[i]) * (realData[i] - uniformToTest[i])); gaussianDiff += ( (realData[i] - gaussianToTest[i]) * (realData[i] - gaussianToTest[i])); gammaDiff += ( (realData[i] - gammaToTest[i]) * (realData[i] - gammaToTest[i])); } // // // // // //debugging /* System.out.println(); System.out.println("///////// Uniform distribution //////////"); System.out.println(); for (int i = 1; i < length; i++) { System.out.println(uniformToTest[i]); } System.out.println(); System.out.println("///////// Gaussian distribution //////////"); System.out.println(); for (int i = 1; i < length; i++) { System.out.println(gaussianToTest[i]); } System.out.println(); System.out.println("///////// Gamma distribution //////////"); System.out.println(); for (int i = 1; i < length; i++) { System.out.println(gammaToTest[i]); } */ System.out.println("mean, stdev, min, max, uni diff, gaus diff, gamma diff: "+realMean+" "+realStdev+" "+realMin+" "+realMax+" "+uniformDiff+" "+gaussianDiff+" "+gammaDiff ); // // // // // // if (uniformDiff < gaussianDiff) { if (uniformDiff < gammaDiff) { return 1; } else { return 3; } } else if (gammaDiff < gaussianDiff) { return 3; } else { return 2; } } //takes in the mean, and stdev so they don't have to be computed again static public int getCurveType(double[] realData, int length, double realMean, double realStdev, Random globalRand) { if (length <= 2) { return 1; } if (realStdev <= 0) { return 1; } double[] uniformToTest = new double[length]; double[] gaussianToTest = new double[length]; double[] gammaToTest = new double[length]; GammaDist gd = new GammaDist(); double uniformDiff = 0; double gammaDiff = 0; double gaussianDiff = 0; double tempDouble = 0; double realMin = realData[1]; double realMax = 0; // double realStdev = 0; // double realMean = 0; double realSymetricMax = 0; double realSum = 0; double diffSqSum = 0; //bubble sort real data for (int i = length + 1; --i >= 1; ) { //for each array element // realSum += realData[i]; //find sum if (realMax < realData[i]) { //find max realMax = realData[i]; } if (realMin > realData[i]) { //find min realMin = realData[i]; } for (int j = 1; j < i; j++) { if (realData[j] > realData[j + 1]) { tempDouble = realData[j]; realData[j] = realData[j + 1]; realData[j + 1] = tempDouble; } } } if (realMin == realMax) { return 1; } if ( (realMin >= realMean) || (realMax <= realMean)) { System.out.println( "mean in function getCurveType is outside range, possible infinite loop. Min, Mean, Max: " + realMin + " " + realMean + " " + realMax); System.exit(11); } /* realMean = realSum / length; //find stdev of real data for (int i = 1; i < length; i++) { diffSqSum += ( (realData[i] - realMean) * (realData[i] - realMean)); } if ( (diffSqSum == 0) || (length <= 2)) { realStdev = 0; } else { realStdev = java.lang.Math.sqrt(diffSqSum / (length - 1)); } */ realSymetricMax = ( (realMean * 2) - realMin); //populate three new double arrays with sampled data, sort them for (int i = 1; i < length; i++) { //uniform uniformToTest[i] = (globalRand.nextDouble() * (realSymetricMax - realMin) + realMin); //gaussian gaussianToTest[i] = realMin - 1; while ( (gaussianToTest[i] < realMin) || (gaussianToTest[i] > realSymetricMax)) { gaussianToTest[i] = (globalRand.nextGaussian() * realStdev) + realMean; } //gamma gammaToTest[i] = realMin - 1; while ( (gammaToTest[i] < realMin) || (gammaToTest[i] > realMax)) { gammaToTest[i] = (gd.GetGammaMS(realMean, realStdev, globalRand)); } } //find least mean squares between real and sampled for (int i = 1; i < length; i++) { uniformDiff += ( (realData[i] - uniformToTest[i]) * (realData[i] - uniformToTest[i])); gaussianDiff += ( (realData[i] - gaussianToTest[i]) * (realData[i] - gaussianToTest[i])); gammaDiff += ( (realData[i] - gammaToTest[i]) * (realData[i] - gammaToTest[i])); } if (uniformDiff < gaussianDiff) { if (uniformDiff < gammaDiff) { return 1; } else { return 3; } } else if (gammaDiff < gaussianDiff) { return 3; } else { return 2; } } //sort ascending double array //find mean of double array //find stdev of double array //find min of double array //find max of double array }