COMMENT
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ca
USEION ca READ eca WRITE ica
RANGE m, h, gca, gbar
RANGE minf, hinf, mtau, htau
GLOBAL q10, temp, tadj, vmin, vmax, vshift
}
PARAMETER {
gbar = 0.1 (pS/um2) vshift = 0 (mV)
cao = 2.5 (mM) cai (mM)
temp = 23 (degC) q10 = 2.3
v (mV)
dt (ms)
celsius (degC)
vmin = -120 (mV)
vmax = 100 (mV)
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
PI = (pi) (1)
}
ASSIGNED {
ica (mA/cm2)
gca (pS/um2)
eca (mV)
minf hinf
mtau (ms) htau (ms)
tadj
}
STATE { m h }
INITIAL {
trates(v+vshift)
m = minf
h = hinf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gca = tadj*gbar*m*m*h
ica = (1e-4) * gca * (v - eca)
}
LOCAL mexp, hexp
DERIVATIVE states {
trates(v+vshift)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
}
PROCEDURE trates(v) {
TABLE minf, hinf, mtau, htau
DEPEND celsius, temp
FROM vmin TO vmax WITH 199
rates(v)
}
PROCEDURE rates(vm) {
LOCAL a, b
tadj = q10^((celsius - temp)/10)
a = 0.055*(-27 - vm)/(exp((-27-vm)/3.8) - 1)
b = 0.94*exp((-75-vm)/17)
mtau = 1/tadj/(a+b)
minf = a/(a+b)
a = 0.000457*exp((-13-vm)/50)
b = 0.0065/(exp((-vm-15)/28) + 1)
htau = 1/tadj/(a+b)
hinf = a/(a+b)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}