import moose
import pylab
import numpy as np
import sys
import matplotlib.pyplot as plt
from matplotlib import cm
import rdesigneur as rd
import xml.etree.ElementTree as ET
import itertools
from scipy import stats
params = {
'diffusionLength':0.5e-6, # Diffusion characteristic length, used as voxel length too.
'dendDiameter': 1.0e-6, # Diameter of section of dendrite in model
'dendLength': 0.5e-6, # Length of section of dendrite in model
'diffConstCa':100e-12, # Diffusion constant of Ca
'stimAmplitude': 0.005, # Ca Stimulus amplitude, mM
'baseCa':2.5e-4, # Base Ca level, mM.
'BAPCa':0.002, # Dend Ca spike amplitude
'BAPwidth':0.1, # Dend Ca spike width.
'blankVoxelsAtEnd':10, # of voxels to leave blank at end of cylinder
'preStimTime':10.0, # Time to run before turning on stimulus.
'postStimTime':40.0, # Time to run after stimulus.
'stimWidth': 2.9, # Duration of Ca influx for each stimulus.
'spineSpacing':1.1e-6, # Spacing between spines.
'diffConstMAPK': 5e-12, # Diffusion constant for MAPK
'diffConstPP': 2e-12, # Diff constant for MAPK-activated phosphatase
'CaActivateRafKf': 6e6, # 1/sec/mM^2: rate for activation of Raf by Ca
'cellModel':'PassiveSoma', # Cell morphology script
'chemModel':'NN_mapk14.g', # Chem model definition
'seqDt': 3.0, # Time interval between successive inputs in seq
'seqDx': 3.0e-6, # Distance between successive inputs in seq.
#'seed': 3, # Seed for random number generator
'seed': 12345, # Seed for random number generator
'sequence': '01234', # Sequence of spines, spaced by seqDx microns,
# activated every seqDt seconds
'fnumber': 0, # identifier for run
}
numSpine = 5
def makePassiveSoma( name, length, diameter ):
elecid = moose.Neuron( '/library/' + name )
dend = moose.Compartment( elecid.path + '/soma' )
dend.diameter = diameter
dend.length = length
dend.x = length
return elecid
def setDiffConst( element, paramName ):
e = moose.element( '/library/chem/kinetics/DEND/' + element )
e.diffConst = params[ paramName ]
def buildStimulusQ( baseCa, sequence ):
blanks = params['blankVoxelsAtEnd']
step = int( round( params['seqDx'] / params['spineSpacing'] ) )
sequence = [ int(i) for i in sequence ]
stimulusQ = {}
onCa = params['stimAmplitude']
stimStart = params['preStimTime']
for i in sequence:
stimulusQ[ stimStart ] = [ blanks + i * step, onCa ]
stimEnd = stimStart + params['stimWidth']
stimulusQ[ stimEnd ] = [ blanks + i * step, baseCa ]
stimStart += params['seqDt']
return stimulusQ
def panelBCsingleCompt( fig ):
rdes = rd.rdesigneur(
useGssa = False,
turnOffElec = True,
chemPlotDt = 1.0,
diffusionLength = params['dendLength'],
spineProto = [['makePassiveSpine()', 'spine']],
spineDistrib = [['spine', '#', str(0.8*params['dendLength']),'1e-7','1.4','0']],
cellProto = [['cell', 'soma']],
chemProto = [[params['chemModel'], 'chem']],
chemDistrib = [['chem', 'soma', 'install', '1' ]],
plotList = [
['soma', '1', 'dend/DEND/P_MAPK', 'conc', '[dend P_MAPK]'],
['#head#', '1', 'psd/Ca', 'conc', '[PSD Ca]'],
['#head#', '1', 'spine/Ca', 'conc', '[spine Ca]'],
['soma', '1', 'dend/DEND/Ca', 'conc', '[dend Ca]'],
],
)
#moose.le( '/library/chem/kinetics' )
moose.element( '/library/chem/kinetics/DEND/Ca_activate_Raf' ).Kf = params['CaActivateRafKf']
rdes.buildModel()
baseCa = params['baseCa'] / 50.0
Ca_input = moose.vec( '/model/chem/psd/Ca_input' )
Ca_input.concInit = baseCa
moose.vec( '/model/chem/dend/DEND/Ca_input' ).concInit = baseCa
moose.reinit()
moose.start(50)
Ca_input.concInit = params['stimAmplitude']
moose.start(1)
Ca_input.concInit = baseCa
moose.start(49)
# Here is another pulse stimulus
Ca_input.concInit = params['stimAmplitude']
moose.start(1)
Ca_input.concInit = baseCa
moose.start(99)
# Here is the step stimulus
Ca_input.concInit = params['stimAmplitude']
moose.start(50)
Ca_input.concInit = baseCa
moose.start(50)
mapkPvec = moose.element( '/model/graphs/plot0' ).vector * 1000
cavec = moose.element( '/model/graphs/plot3' ).vector * 1000
t = np.arange( 0, len( cavec ) * rdes.chemPlotDt, rdes.chemPlotDt )
xticks = ['0', '', '100', '', '200', '', '300' ]
ax = plotBoilerplate( 'B', (2,0), 'Time (s)', 'Ca ($\mu$M)', xticks )
plt.plot( t, cavec )
ax = plotBoilerplate( 'C', (2,1), 'Time (s)', 'MAPK-P ($\mu$M)', xticks )
plt.plot( t, mapkPvec )
print "Finished panelBC for single Compt dynamics"
moose.delete( '/model' )
def runStimulus( sequence ):
baseCa = params['baseCa'] / 50.0
stimQ = buildStimulusQ( baseCa, sequence )
Ca_input = moose.vec( '/model/chem/psd/Ca_input' )
Ca_input.concInit = baseCa
moose.vec( '/model/chem/dend/DEND/Ca_input' ).concInit = baseCa
moose.reinit()
clock = moose.element( '/clock' )
for t in sorted( stimQ ):
[index, conc] = stimQ[t]
currt = clock.currentTime
if ( t > currt ):
moose.start( t - currt )
print "At t = ", t, "; assigning CaInput[", index, "] = ", conc
Ca_input[ index ].concInit = conc
moose.start(params['postStimTime'] )
print "Finished stimulus run at t = ", clock.currentTime
def runAndDisplaySumPlot( seq, label, pos, chemPlotDt ):
runStimulus( seq )
mapk = moose.vec( '/model/graphs/plot0' )
mapkPvec = np.zeros( len( mapk[0].vector ) )
for i in mapk:
mapkPvec += i.vector
mapkPvec *= 1000
t = np.arange( 0, len( mapkPvec ) * chemPlotDt, chemPlotDt )
xt = np.arange( 0, len( mapkPvec ) * chemPlotDt, 50 )
xticks = [ str(i) for i in xt ]
print "XT = ", xt, xticks
ax = plotBoilerplate( label, pos, 'Time (s)', 'MAPK-P ($\mu$M)', xticks )
plt.plot( t, mapkPvec )
def runAndDisplay( seq, label, pos, chemPlotDt, maxy ):
runStimulus( seq )
mapk = moose.vec( '/model/graphs/plot0' )
parentVoxel = moose.element( '/model/chem/spine' ).neuronVoxel
blanks = params['blankVoxelsAtEnd']
step = int( round( params['seqDx'] / params['spineSpacing'] ) )
plotIndices = [int(parentVoxel[blanks + i * step]) for i in range(len(seq)) ]
print plotIndices
t = np.arange( 0, len( mapk[0].vector ) * chemPlotDt, chemPlotDt )
ax = plotBoilerplate( label, pos, 'Time (s)', 'MAPK-P ($\mu$M)')
maxx = max( t )
xt = np.arange( 0, maxx, 20 )
xticks = [ str(int(i)) for i in xt ]
print "XT = ", xt, xticks
ax.xaxis.set_ticks( xt )
ax.set_xticklabels( xticks )
ax.set_ylim( [0.0, maxy] )
for i in plotIndices:
plt.plot( t, mapk[i].vector * 1000 )
def panelEFspatialSeq( fig ):
print "Starting Panel EF"
moose.seed( int(params['seed']) )
rdes = rd.rdesigneur(
useGssa = False,
turnOffElec = True,
chemPlotDt = 0.02,
diffusionLength = params['diffusionLength'],
spineProto = [['makePassiveSpine()', 'spine']],
spineDistrib = [['spine', '#', str(params['spineSpacing']),'1e-7','1.4','0']],
cellProto = [['cell', 'soma']],
chemProto = [[params['chemModel'], 'chem']],
chemDistrib = [['chem', 'soma', 'install', '1' ]],
plotList = [
['soma', '1', 'dend/DEND/P_MAPK', 'conc', '[dend P_MAPK]'],
['#head#', '1', 'psd/Ca', 'conc', '[PSD Ca]'],
['#head#', '1', 'spine/Ca', 'conc', '[spine Ca]'],
['soma', '1', 'dend/DEND/Ca', 'conc', '[dend Ca]'],
],
)
# Assign parameters to the prototype model.
setDiffConst( 'Ca', 'diffConstCa' )
setDiffConst( '../../compartment_1/Ca', 'diffConstCa' )
setDiffConst( '../../compartment_2/Ca', 'diffConstCa' )
setDiffConst( 'P_MAPK', 'diffConstMAPK' )
setDiffConst( 'MAPK', 'diffConstMAPK' )
setDiffConst( 'reg_phosphatase', 'diffConstPP' )
setDiffConst( 'inact_phosphatase', 'diffConstPP' )
moose.element( '/library/chem/kinetics/DEND/Ca_activate_Raf' ).Kf = params['CaActivateRafKf']
print "Set up rdesigneur"
rdes.buildModel()
print "MODEL BUILT"
################################################################
# Run and display the stimulus
runAndDisplay( '01234', 'E', (4,0), rdes.chemPlotDt, 0.6 )
runAndDisplay( '40312', 'F', (4,1), rdes.chemPlotDt, 0.6 )
moose.delete( '/model' )
def plotBoilerplate( panelTitle, plotPos, xlabel = '', ylabel = '', xticks = [] ):
ax = plt.subplot2grid( (5,2), plotPos )
#ax.xaxis.set_ticks( i[1] )
#ax.locator_params(
ax.spines['top'].set_visible( False )
ax.spines['right'].set_visible( False )
ax.tick_params( direction = 'out' )
#ax.set_xticklabels([])
ax.set_xticklabels( xticks )
ax.set_xlabel( xlabel )
for tick in ax.xaxis.get_major_ticks():
tick.tick2On = False
for tick in ax.yaxis.get_major_ticks():
tick.tick2On = False
plt.ylabel( ylabel, fontsize = 14 )
# alternate way of doing this separately.
#plt.yaxis.label.size_size(16)
#plt.title( 'B' )
ax.text( -0.3, 1.1, panelTitle, fontsize = 18, weight = 'bold',
transform=ax.transAxes )
return ax
def main():
global params
fig = plt.figure(figsize = (6,10), facecolor='white')
library = moose.Neutral( '/library' )
for ii in range( len( sys.argv ) ):
if sys.argv[ii][:2] == '--':
argName = sys.argv[ii][2:]
if argName in params:
params[argName] = float( sys.argv[ii+1] )
if argName == 'sequence':
params[argName] = sys.argv[ii+1] # Leave it as a str.
moose.seed( int(params['seed']) )
'''
'''
makePassiveSoma( 'cell', params['dendLength'], params['dendDiameter'] )
moose.le( '/library' )
panelBCsingleCompt( fig );
moose.le( '/library' )
moose.delete( '/library/soma' )
params['dendLength'] = 60e-6
makePassiveSoma( 'cell', params['dendLength'], params['dendDiameter'] )
panelEFspatialSeq( fig );
plt.tight_layout()
plt.show()
if __name__ == '__main__':
main()