/*----------------------------------------------------------------------------

	CURRENT-CLAMP SIMULATIONS OF TC CELLS
	=====================================
	Accession number ModelDB: 232876

	Simulations of a simplified model of thalamic relay cell.

	The current model is described in the following paper:
		Zeldenrust F, Chameau P, Wadman WJ. Spike and Burst Coding in Thalamocortical Relay Cells. PLoS Computational Biology, 2017.


	The original model, the basis of the current one, is described in the following paper:
	   Destexhe A, Neubig M, Ulrich D and Huguenard JR.  Dendritic
	   low-threshold calcium currents in thalamic relay cells.  
	   Journal of Neuroscience 18: 3574-3588, 1998.

	Please cite these references when using this model.
----------------------------------------------------------------------------*/

//----------------------------------------------------------------------------
//  simulation settings
//----------------------------------------------------------------------------

factor = .1
vhold = 80

strdef filename

if(factor == 0.5){
	filename = "tcrelay3c_factor_05"
} else if(factor == 0.25){
	filename = "tcrelay3c_factor_025"
} else if(factor == 0.75){
	filename = "tcrelay3c_factor_075"
} else if(factor == 0){
	filename = "tcrelay3c_factor_0"
} else if(factor == 0.1){
	filename = "tcrelay3c_factor_01"
} else if(factor == 2){
	filename = "tcrelay3c_factor_2"
} else if(factor == 1.5){
	filename = "tcrelay3c_factor_15"
} else if(factor == 1){
	filename = "tcrelay3c_factor_1"
}

if(vhold == 80){
	sprint(filename,"%s%s",filename,"_80")
} else if(vhold == 70){
	sprint(filename,"%s%s",filename,"_70")
} else if(vhold == 60){
	sprint(filename,"%s%s",filename,"_60")
} else if(vhold == 50){
	sprint(filename,"%s%s",filename,"_50")
}


//----------------------------------------------------------------------------
//  load and define general graphical procedures
//----------------------------------------------------------------------------

load_file("nrngui.hoc")		// updated command version of above
nrncontrolmenu()		// create control menu

objectvar g[20]			// max 20 graphs
ngraph = 0

proc addgraph() { local ii	// define subroutine to add a new graph
				// addgraph("variable", minvalue, maxvalue)
	ngraph = ngraph+1
	ii = ngraph-1
	g[ii] = new Graph()
	g[ii].size(tstart,tstop,$2,$3)
	g[ii].xaxis()
	g[ii].yaxis()
	g[ii].addvar($s1,1,0)
	g[ii].save_name("graphList[0].")
	graphList[0].append(g[ii])
}

proc addshape() { local ii	// define subroutine to add a new shape
				// addshape()
	ngraph = ngraph+1
	ii = ngraph-1
	g[ii] = new PlotShape()
	g[ii].scale(-130,50)
}

//----------------------------------------------------------------------------
//  transient time
//----------------------------------------------------------------------------

trans = 00

print " "
print ">> Transient time of ",trans," ms"
print " "


//----------------------------------------------------------------------------
//  create multi-compartment geometry and insert currents
//----------------------------------------------------------------------------

xopen("cells/tc3.geo")		// read geometry file

corrD = 7.954			// dendritic surface correction
				// (estimated by fitting voltage-clamp traces)
				
corrR = 0.75  // make R 25% higher, so g=1/1.25=0.8, do also for C for correction RC time
corrC = 0.9   // make RC time smaller

G_pas = corrR*3.79e-5
E_pas = -73			// to fit current-clamp data (was -71 to -73)
E_pas = -76.5			// within 3 mV error
C_m   = corrC*corrR*0.88


forall { 				// insert passive current everywhere
	insert pas
	g_pas = G_pas * corrD
	e_pas = E_pas
	cm = C_m * corrD
	Ra = 173
	L = L
	
}

soma {
	g_pas = G_pas
	cm = C_m

	insert hh2			// insert fast spikes
	ena = 50
	ek = -100
	vtraub_hh2 = -52
	gnabar_hh2 = 0.1
	gkbar_hh2 = 0.1
	
	insert iL     		// insert IL (high-threshold calcium)
	pcabar_iL=0.00005
	
	
	
	insert iC   // IKC (calcium-dependent potassium)
	gkbar_iC=0.001
	}


forall {
	insert itGHK		// T-current everywhere
	cai = 2.4e-4 
	cao = 2 
	eca = 120 
	shift_itGHK = -1	// screening charge shift + 3 mV error
	gcabar_itGHK = corrD * 0.0002
	qm_itGHK = 2.5
	qh_itGHK = 2.5
	

	insert cad			// calcium diffusion everywhere
	depth_cad = 0.1 * corrD
	kt_cad = 0			// no pump
	kd_cad = 1e-4
	taur_cad = 5
	cainf_cad = 2.4e-4	
	
	insert iar 			// Ih everywhere
	ghbar_iar = factor*1.3e-04

}



xopen("loc3.oc")		// load procedures for localizing T-current

// high distal density, match detailed model in voltage-clamp
localize(1.7e-5,corrD*9.5e-5)

  
//----------------------------------------------------------------------------
//  setup simulation parameters
//----------------------------------------------------------------------------

Dt = 0.1
npoints = 9030000         // longer traces             stim_long

dt = 0.1			// must be submultiple of Dt
tstart = trans
tstop = trans + npoints * Dt
runStopAt = tstop
steps_per_ms = 1/Dt

celsius=30

v_init = -74			// approximate resting Vm


//----------------------------------------------------------------------------
//  insert electrodes in the soma
//----------------------------------------------------------------------------

if(ismenu==0) {
  xopen("El.oc")		// Electrode with series resistance
  ismenu = 1
}

access soma

// DC current electrode for setting holding potential
//----------------------------------------------------------------------------

objectvar El1			// insert electrode
El1 = new Electrode()
electrodes_present = 1


// CURRENT-CLAMP MODE

soma El1.stim.loc(0.5)		// put electrode in current-clamp mode
El1.stim.del = 0
El1.stim.dur = tstop - tstart

if(vhold == 80){
	El1.stim.amp = -0.7*factor     // for -80
} else if(vhold == 70){
	El1.stim.amp = -0.475*factor   // for -70 
} else if(vhold == 60){
	El1.stim.amp = -0.275*factor   // for -60
} else if(vhold == 50){
	El1.stim.amp = -0.0*factor    // for -50
}

// Variable current electrode for frozen noise stimulus
//----------------------------------------------------------------------------
objectvar El2             
soma El2 = new IClamp(0.5) 
El2.del = 0
El2.dur = tstop-tstart   

// Frozen noise stimulus   
objref r,f
f = new File()
r = new Vector()
// f.ropen("stimt1s3.dat") // tau = 1 ms stimulus
f.ropen("stim_long.dat")
r.scanf(f)
r.play(&El2.amp, dt)    

// Variable current electrode for extra noise
//----------------------------------------------------------------------------
// objectvar El3             
// soma El3 = new IClamp(0.5) 
// El3.del = 0
// El3.dur = tstop-tstart   
// 
// Noisy stimulus extra noise 
// objref r1,f1
// f1 = new File()
// r1 = new Vector()
// f1.ropen("stimvar.dat")
// r1.scanf(f1)
// r1.play(&El3.amp, dt)    

//----------------------------------------------------------------------------
//  add graphs
//----------------------------------------------------------------------------

addgraph("soma.v(0.5)",-100,50)		// soma


//----------------------------------------------------------------------------
//  Save
//----------------------------------------------------------------------------
objref rect, recv, recinternalcalcium
objref recicap, recih, recit, recikc, recina, recik
objref recmit, rechit, reco1ih, reco2ih, recmikc, recmina, rechina, recnik

// General
//----------------------------------------------------------------------------
// rect = new Vector()
// rect.record(&t)
recv = new Vector()
recv.record(&soma.v(0.5))
// recinternalcalcium = new Vector()
// recinternalcalcium.record(&soma.v(0.5))

// Currents
//----------------------------------------------------------------------------
// recicap = new Vector()
// recicap.record(&soma.i_cap(0.5))
recih = new Vector()
recih.record(&soma.ih(0.5))
recit = new Vector()
recit.record(&soma.ica(0.5))
// recikc = new Vector()
// recikc.record(&soma.iC(0.5))
recina = new Vector()
recina.record(&soma.ina(0.5))
recik = new Vector()
recik.record(&soma.ik(0.5))

// Gating variables
//----------------------------------------------------------------------------
recmit = new Vector()
recmit.record(&soma.m_itGHK(0.5))
rechit = new Vector()
rechit.record(&soma.h_itGHK(0.5))
reco1ih = new Vector()
reco1ih.record(&soma.o1_iar(0.5))
reco2ih = new Vector()
reco2ih.record(&soma.o2_iar(0.5))
// recmikc = new Vector()
// recmikc.record(&soma.m_iC(0.5))
recmina = new Vector()
recmina.record(&soma.m_hh2(0.5))
rechina = new Vector()
rechina.record(&soma.h_hh2(0.5))
recnik = new Vector()
recnik.record(&soma.n_hh2(0.5))



// Procedures for saving
//----------------------------------------------------------------------------
objref savdata
objref tempmatrix
tempmatrix = new Matrix()

proc fileopen() {
    savdata = new File()

	sprint(filename,"%s%s",filename,".dat")
    savdata.wopen(filename)
}
    
proc slaop() {
    tempmatrix.resize(recv.size(),7)   
    tempmatrix.setcol(0,recv)
    tempmatrix.setcol(1,recih)
    tempmatrix.setcol(2,recit)
    tempmatrix.setcol(3,recmit)
    tempmatrix.setcol(4,rechit)
    tempmatrix.setcol(5,reco1ih)
    tempmatrix.setcol(6,reco2ih )


	tempmatrix.fprint(savdata, " %g")
    savdata.close()

}

proc fileopenna() {
    savdata = new File()
	sprint(filename,"%s%s",filename,"_ina.dat")
    savdata.wopen(filename)
}
    
proc slaopna() {
    tempmatrix.resize(recv.size(),3)   
    tempmatrix.setcol(0,recina)
    tempmatrix.setcol(1,recmina)
    tempmatrix.setcol(2,rechina)


	tempmatrix.fprint(savdata, " %g")
    savdata.close()

}

proc fileopenk() {
    savdata = new File()
	sprint(filename,"%s%s",filename,"_ik.dat")
    savdata.wopen(filename)
}
    
proc slaopk() {
    tempmatrix.resize(recv.size(),2)   
    tempmatrix.setcol(0,recik)
    tempmatrix.setcol(1,recnik)


	tempmatrix.fprint(savdata, " %g")
    savdata.close()

}