# STRUCTURED SPARSELY CONNECTED NETWORK 4/10/02 # Network of 8 STN & 8 GPE cells. # Pruduces Nice clusters. # Used to generate Figure 5 in J. Neuro paper. # Off-center architecture from GPe to STN, footprint 5: skips 3 in center # Each GPe cells receives input from one STN cell and its # nearest neighbor GPe cells. Periodic boundary conditions. ######## STN Parameters ####### p gl=2.25,gna=37.5,gk=45,gahp=9.,gca=.5,gt=.5 p vl=-60,vna=55.,vk=-80.,vca=140. p thetam=-30,sigmam=-15,thetah=-39,sigmah=3.1 p thetan=-32.,sigman=-8.,thetar=-67,sigmar=2. p thetaa=-63.,sigmaa=-7.8,thetab=.4,sigmab=-.1 p thetas=-39,sigmas=-8 p tauh0=1,tauh1=500.,thh=-57.,sigmaht=3.,phi=.75 p taun0=1,taun1=100.,thn=-80.,sigmant=26. p taur0=40,taur1=17.5,thr=68,sigmart=2.2,phir=.2 p k1=15.,eps=5e-05 p kca=22.5 p i[1..16]=0 p alpha=5,beta=1.,thetag=30.,gGtoS=2.25,vGtoS=-85 p thetH=-39,sigmH=-8 ####### GPe Parameters ####### p gnag=120.,gkg=30.,gahpg=30.,gtg=.5,gcag=.15,glg=.1 p vnag=55.,vkg=-80.,vcag=120.,vlg=-55. p thmg=-37.,sigmg=-10. p thhg=-58,sighg=12 p thng=-50.,signg=-14. p thrg=-70.,sigrg=2.,taurg=30. p thag=-57.,sigag=-2.,thsg=-35.,sigsg=-2. p tauhg0=.05,tauhg1=.27,thhgt=-40,shg=12 p taung0=.05,taung1=.27,thngt=-40,sng=12 p k1g=30.,kcag=20.,epsg=0.0001 p phirg=1,phing=.05,phihg=.05 p ig[1..16]=-1.0 p gStoG=0.3,vStoG=0,alphag=2,betag=.04,thetagg=20 p vGtoG=-85,gGtoG=0.1 p thetHg=-57,sigmHg=-2 ####### STN Functions ####### minf(v)=1./(1.+exp((v-thetam)/sigmam)) hinf(v)=1./(1.+exp((v-thetah)/sigmah)) ninf(v)=1./(1.+exp((v-thetan)/sigman)) rinf(v)=1/(1+exp((v-thetar)/sigmar)) ainf(v)=1/(1+exp((v-thetaa)/sigmaa)) binf(r)=1/(1+exp((r-thetab)/sigmab))-1/(1+exp(-thetab/sigmab)) sinf(v)=1./(1.+exp((v-thetas)/sigmas)) tauh(v)=tauh0+tauh1/(1+exp((v-thh)/sigmaht)) taun(v)=taun0+taun1/(1+exp((v-thn)/sigmant)) taur(v)=taur0+taur1/(1+exp((v-thr)/sigmart)) Hin(v)=1/(1+exp((v-thetH)/sigmH)) ####### GPe Functions ####### #synaptic infinity function is abbreviated Hing minfg(v)=1./(1.+exp((v-thmg)/sigmg)) hinfg(v)=1/(1+exp((v-thhg)/sighg)) ninfg(v)=1./(1.+exp((v-thng)/signg)) rinfg(v)=1/(1+exp((v-thrg)/sigrg)) ainfg(v)=1/(1+exp((v-thag)/sigag)) sinfg(v)=1/(1+exp((v-thsg)/sigsg)) tauhg(v)=tauhg0+tauhg1/(1+exp((v-thhgt)/shg)) taung(v)=taung0+taung1/(1+exp((v-thngt)/sng)) Hing(v)=1/(1+exp((v-thetHg)/sigmHg)) ####### STN Currents ####### il(v)=gl*(v-vl) ina(v,h)=gna*(minf(v))^3*h*(v-vna) ik(v,n)=gk*n^4*(v-vk) iahp(v,ca)=gahp*(v-vk)*ca/(ca+k1) ica(v)=gca*((sinf(v))^2)*(v-vca) it(v,r)=gt*(ainf(v)**3)*(binf(r)^2)*(v-vca) isyn(v,s)=gGtoS*s*(v-vGtoS) curr(v,h,n,ca,r)=il(v)+ina(v,h)+ik(v,n)+iahp(v,ca)+ica(v)+it(v,r) ####### GPe Currents ####### ilg(v)=glg*(v-vlg) inag(v,h)=gnag*(minfg(v)^3)*h*(v-vnag) ikg(v,n)=gkg*(n^4)*(v-vkg) iahpg(v,ca)=gahpg*(v-vkg)*ca/(ca+k1g) icag(v)=gcag*((sinfg(v))^2)*(v-vcag) itg(v,r)=gtg*(ainfg(v)^3)*r*(v-vcag) isyng(vg,s)=gStoG*s*(vg-vStoG) isyngg(vg,s)=gGtoG*s*(vg-vGtoG) currg(v,h,n,ca,r)=itg(v,r)+inag(v,h)+ikg(v,n)+ilg(v)+iahpg(v,ca)+icag(v) ####### STN initial conditions ####### i v[1..2]=-77 i h[1..2]=0.19 i n[1..2]=0.15 i r[1..2]=0.23 i ca[1..2]=0.06 i s[1..2]=.0 i v[3..4]=-53.2 i h[3..4]=0.1 i n[3..4]=0.45 i r[3..4]=0.6 i ca[3..4]=0.12 i s[3..4]=.44 i v[5..6]=-77 i h[5..6]=0.19 i n[5..6]=0.15 i r[5..6]=0.23 i ca[5..6]=0.06 i s[5..6]=.0 i v[7..8]=-53.2 i h[7..8]=0.1 i n[7..8]=0.45 i r[7..8]=0.6 i ca[7..8]=0.12 i s[7..8]=.44 ####### GPE initial conditions ####### i vg[1..2]=-95. i ng[1..2]=.04 i hg[1..2]=.95 i ca[1..2]=0.06 i rg[1..2]=.9 i vg[3..4]=-77. i ng[3..4]=.78 i hg[3..4]=.2 i cag[3..4]=0.035 i rg[3..4]=0.9 i sg[1..2]=0.09 i sg[3..4]=.5 i vg[5..6]=-95. i ng[5..6]=.04 i hg[5..6]=.95 i ca[5..6]=0.06 i rg[5..6]=.9 i vg[7..8]=-77. i ng[7..8]=.78 i hg[7..8]=.2 i cag[7..8]=0.035 i rg[7..8]=0.9 i sg[5..6]=0.09 i sg[7..8]=.5 ####### STN Equations ####### v1'=-(curr(v1,h1,n1,ca1,r1))-(isyn(v1,sg3)+isyn(v1,sg7))+i1 h1'=phi*( hinf(v1)-h1 )/tauh(v1) n1'=phi*( ninf(v1)-n1 )/taun(v1) r1'=phir*(rinf(v1)-r1)/taur(v1) ca1'=phi*eps*(-gca*((sinf(v1))^2)*(v1-vca)-it(v1,r1) - kca*ca1) s1'=alpha*(1-s1)*Hin(v1-thetag)-beta*s1 v2'=-(curr(v2,h2,n2,ca2,r2))-(isyn(v2,sg4)+isyn(v2,sg8))+i2 h2'=phi*( hinf(v2)-h2)/tauh(v2) n2'=phi*( ninf(v2)-n2)/taun(v2) r2'=phir*(rinf(v2)-r2)/taur(v2) ca2'=phi*eps*(-gca*((sinf(v2))^2)*(v2-vca)-it(v2,r2) - kca*ca2) s2'=alpha*(1-s2)*Hin(v2-thetag)-beta*s2 v3'=-(curr(v3,h3,n3,ca3,r3))-(isyn(v3,sg5)+isyn(v3,sg1))+i3 h3'=phi*( hinf(v3)-h3)/tauh(v3) n3'=phi*( ninf(v3)-n3)/taun(v3) r3'=phir*(rinf(v3)-r3)/taur(v3) ca3'=phi*eps*(-gca*((sinf(v3))^2)*(v3-vca)-it(v3,r3) - kca*ca3) s3'=alpha*(1-s3)*Hin(v3-thetag)-beta*s3 v4'=-(curr(v4,h4,n4,ca4,r4))-(isyn(v4,sg6)+isyn(v4,sg2))+i4 h4'=phi*( hinf(v4)-h4)/tauh(v4) n4'=phi*( ninf(v4)-n4)/taun(v4) r4'=phir*(rinf(v4)-r4)/taur(v4) ca4'=phi*eps*(-gca*((sinf(v4))^2)*(v4-vca)-it(v4,r4) - kca*ca4) s4'=alpha*(1-s4)*Hin(v4-thetag)-beta*s4 v5'=-(curr(v5,h5,n5,ca5,r5))-(isyn(v5,sg7)+isyn(v5,sg3))+i5 h5'=phi*( hinf(v5)-h5)/tauh(v5) n5'=phi*( ninf(v5)-n5)/taun(v5) r5'=phir*(rinf(v5)-r5)/taur(v5) ca5'=phi*eps*(-gca*((sinf(v5))^2)*(v5-vca)-it(v5,r5) - kca*ca5) s5'=alpha*(1-s5)*Hin(v5-thetag)-beta*s5 v6'=-(curr(v6,h6,n6,ca6,r6))-(isyn(v6,sg8)+isyn(v6,sg4))+i6 h6'=phi*( hinf(v6)-h6)/tauh(v6) n6'=phi*( ninf(v6)-n6)/taun(v6) r6'=phir*(rinf(v6)-r6)/taur(v6) ca6'=phi*eps*(-gca*((sinf(v6))^2)*(v6-vca)-it(v6,r6) - kca*ca6) s6'=alpha*(1-s6)*Hin(v6-thetag)-beta*s6 v7'=-(curr(v7,h7,n7,ca7,r7))-(isyn(v7,sg1)+isyn(v7,sg5))+i7 h7'=phi*( hinf(v7)-h7)/tauh(v7) n7'=phi*( ninf(v7)-n7)/taun(v7) r7'=phir*(rinf(v7)-r7)/taur(v7) ca7'=phi*eps*(-gca*((sinf(v7))^2)*(v7-vca)-it(v7,r7) - kca*ca7) s7'=alpha*(1-s7)*Hin(v7-thetag)-beta*s7 v8'=-(curr(v8,h8,n8,ca8,r8))-(isyn(v8,sg2)+isyn(v8,sg6))+i8 h8'=phi*( hinf(v8)-h8)/tauh(v8) n8'=phi*( ninf(v8)-n8)/taun(v8) r8'=phir*(rinf(v8)-r8)/taur(v8) ca8'=phi*eps*(-gca*((sinf(v8))^2)*(v8-vca)-it(v8,r8) - kca*ca8) s8'=alpha*(1-s8)*Hin(v8-thetag)-beta*s8 ####### GPe Equations ####### vg1'=-currg(vg1,hg1,ng1,cag1,rg1)-isyng(vg1,s1)+ig1-isyngg(vg1,sg2+sg8) vg2'=-currg(vg2,hg2,ng2,cag2,rg2)-isyng(vg2,s2)+ig2-isyngg(vg2,sg1+sg3) vg3'=-currg(vg3,hg3,ng3,cag3,rg3)-isyng(vg3,s3)+ig3-isyngg(vg3,sg2+sg4) vg4'=-currg(vg4,hg4,ng4,cag4,rg4)-isyng(vg4,s4)+ig4-isyngg(vg4,sg3+sg5) vg5'=-currg(vg5,hg5,ng5,cag5,rg5)-isyng(vg5,s5)+ig5-isyngg(vg5,sg4+sg6) vg6'=-currg(vg6,hg6,ng6,cag6,rg6)-isyng(vg6,s6)+ig6-isyngg(vg6,sg5+sg7) vg7'=-currg(vg7,hg7,ng7,cag7,rg7)-isyng(vg7,s7)+ig7-isyngg(vg7,sg6+sg8) vg8'=-currg(vg8,hg8,ng8,cag8,rg8)-isyng(vg8,s8)+ig8-isyngg(vg8,sg1+sg7) ng[1..8]'= phing*(ninfg(vg[j])-ng[j])/taung(vg[j]) hg[1..8]'= phihg*(hinfg(vg[j])-hg[j])/tauhg(vg[j]) rg[1..8]'=phirg*(rinfg(vg[j])-rg[j])/taurg cag[1..8]'=epsg*(-icag(vg[j])-itg(vg[j],rg[j]) - kcag*cag[j]) sg[1..8]'=alphag*(1-sg[j])*Hing(vg[j]-thetagg)-betag*sg[j] # NUMERICS @ dt=.2,total=999,meth=qualrk,xp=t,yp=v,xlo=0,xhi=1000,ylo=-80,yhi=20.,bound=5000 done