TITLE AMPA synapse for nucleus accumbens model
: see comments below
NEURON {
POINT_PROCESS AMPA
RANGE gbar, tau_r, tau_d, scale, spkcnt, countflag, i, t1, ca_ratio, ical, itmp, qfact, g
NONSPECIFIC_CURRENT i
USEION cal WRITE ical VALENCE 2
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
}
PARAMETER {
gbar = 8.5e-4 (umho) : approx 0.5:1 NMDA:AMPA ratio (Myme 2003)
: with mg = 0, vh = -70, one pulse, NMDA = 300 pS
: here AMPA = 593 pS (NMDA set to Dalby 2003)
tau_r = 2.2 (ms) : Gotz 1997, Table 1 - rise tau
tau_d = 11.5 (ms) : Gotz 1997, Table 1 - decay tau
Erev = 0 (mV) : reversal potential, Jahn 1998
saturate = 1.2 : causes the conductance to saturate - matched to
: Destexhe's reduced model in [1]
qfact = 2 : convert 22 degC to 35 degC
ca_ratio = 0.005 : ratio of calcium current to total current
: Burnashev/Sakmann J Phys 1995 485:403-418
: with Carter/Sabatini Neuron 2004 44:483-493
g_factor : factor used to scale the gbar of the AMPA
}
ASSIGNED {
g (umho)
v (mV) : postsynaptic voltage
itmp (nA) : temp value of current
i (nA) : nonspecific current = g*(v - Erev)
ical (nA) : calcium current through AMPA synapse (Carter/Sabatini)
t1 (ms)
y1_add (/ms) : value added to y1 when a presynaptic spike is registered
y1_loc (/ms)
countflag : start/stop counting spikes delivered
spkcnt : counts number of events delivered to synapse
scale : scale allows the current to be scaled by weight
} : so NetCon(...,2) gives 2*the current as NetCon(...,1)
STATE {
y1 (/ms)
y2 : sum of beta-functions, describing the total conductance
}
INITIAL {
y1_add = 0
scale = 0
spkcnt = 0
countflag = 0
t1 = 0
y1_loc = 0
g_factor = 1
}
BREAKPOINT {
SOLVE betadyn METHOD cnexp
g = gbar * g_factor * y2
itmp = scale * g * (v - Erev)
i = (1-ca_ratio) * itmp
ical = ca_ratio * itmp
}
DERIVATIVE betadyn {
: dynamics of the beta-function, from [2]
y1' = -y1 / (tau_d/qfact)
y2' = y1 - y2 / (tau_r/qfact)
}
NET_RECEIVE( weight, y1_loc (/ms) ) {
: updating the local y1 variable
y1_loc = y1_loc*exp( -(t - t1) / (tau_d/qfact) )
: y1_add is dependent on the present value of the local
: y1 variable, y1_loc
y1_add = (1 - y1_loc/saturate)
: update the local y1 variable
y1_loc = y1_loc + y1_add
: presynaptic spike is finaly registered
y1 = y1 + y1_add
: store the spike time
t1 = t
spkcnt = spkcnt + 1
scale = weight
}
COMMENT
Author Johan Hake (c) spring 2004
: Summate input from many presynaptic sources and saturate
: each one of them during heavy presynaptic firing
: [1] Destexhe, A., Z. F. Mainen and T. J. Sejnowski (1998)
: Kinetic models of synaptic transmission
: In C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling
: [2] Rotter, S. and M. Diesmann (1999) Biol. Cybern. 81, 381-402
: Exact digital simulation of time-invariant linear systems with application
: to neural modeling
Dalby, N. O., and Mody, I. (2003). Activation of NMDA receptors in rat
dentate gyrus granule cells by spontaneous and evoked transmitter
release. J Neurophysiol 90, 786-797.
Gotz, T., Kraushaar, U., Geiger, J., Lubke, J., Berger, T., and Jonas,
P. (1997). Functional properties of AMPA and NMDA receptors expressed in
identified types of basal ganglia neurons. J Neurosci 17, 204-215.
Jahn K, Bufler J, Franke C (1998) Kinetics of AMPA-type glutamate
receptor channels in rat caudate-putamen neurones show a wide range of
desensitization but distinct recovery characteristics. Eur J Neurosci
10:664-672.
Myme, C. I., Sugino, K., Turrigiano, G. G., and Nelson, S. B. (2003).
The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is
conserved across prefrontal and visual cortices. J Neurophysiol 90,
771-779.
Gutfreund H, Kinetics for the Life Sciences, Cambridge University Press,
1995, pg 234. (suggested by Ted Carnevale)
ENDCOMMENT