% function plotCorr(datafile, jitterIndex) plots a summary of MSE vs
% correlation.
%
% dataFile: filename of saved data from a exp_correlation.m
% jitterIndex: index of jitter level in this file
function plotCorr(datafile, jitterIndex)
data = load(datafile);
hold on
plotData(data, data.epochRateIndices, 'k-', jitterIndex);
plotData(data, data.thresholdIndices10, 'k:', jitterIndex);
plotData(data, data.thresholdIndices22, 'k:', jitterIndex);
plotData(data, data.thresholdIndices55, 'k:', jitterIndex);
xlabel('Pairwise correlation')
ylabel('MSE')
addLabel(data, data.thresholdIndices10(1), jitterIndex, 'a');
addLabel(data, data.thresholdIndices22(1), jitterIndex, 'b');
addLabel(data, data.thresholdIndices55(1), jitterIndex, 'g');
function addLabel(data, caseIndex, jitterIndex, labelText)
h = text(data.meanPeakCorrelation(caseIndex)+.005, data.meanE(caseIndex,jitterIndex), labelText)
set(h, 'FontName', 'Symbol')
function plotData(data, caseIndices, symbol, jitterIndex)
x = data.meanPeakCorrelation(caseIndices);
y = squeeze(data.meanE(caseIndices,jitterIndex,:));
meanY = mean(y, 2);
sdY = std(y, 0, 2);
plot(x, meanY, symbol);
hold on
for i = 1:length(x)
plot([x(i) x(i)], [meanY(i)-sdY(i) meanY(i)+sdY(i)], symbol)
end