// Artificial cells no longer need a default section.
//Network cell templates
// AACell
// Simplified version (BPG 27-9-08)
// - geometry and channels from Santhakumar et al 2005
// - geometry modified to preserve VCUs different dendrites
begintemplate AACell
public is_art
public init, topol, basic_shape, subsets, geom, biophys
public pre_list, connect2target
public soma
public radProx1, radMed1, radDist1, lmM1, lmt1
public radProx2, radMed2, radDist2, lmM2, lmt2
public oriProx1, oriMed1, oriDist1
public oriProx2, oriMed2, oriDist2
public all
objref pre_list
proc init() {
topol()
subsets()
geom()
biophys()
geom_nseg()
pre_list = new List()
synapses()
}
create soma
create radProx1, radMed1, radDist1, lmM1, lmt1
create radProx2, radMed2, radDist2, lmM2, lmt2
create oriProx1, oriMed1, oriDist1
create oriProx2, oriMed2, oriDist2
proc topol() { local i
connect radProx1(0), soma(0)
connect radMed1(0), radProx1(1)
connect radDist1(0), radMed1(1)
connect lmM1(0), radDist1(1)
connect lmt1(0), lmM1(1)
connect radProx2(0), soma(1)
connect radMed2(0), radProx2(1)
connect radDist2(0), radMed2(1)
connect lmM2(0), radDist2(1)
connect lmt2(0), lmM2(1)
connect oriProx1(0), soma(0)
connect oriMed1(0), oriProx1(1)
connect oriDist1(0), oriMed1(1)
connect oriProx2(0), soma(1)
connect oriMed2(0), oriProx2(1)
connect oriDist2(0), oriMed2(1)
//basic_shape()
}
proc basic_shape() {
soma { pt3dclear() pt3dadd(0, 0, 0, 10) pt3dadd(15, 0, 0, 10) }
radProx1 { pt3dclear() pt3dadd(0, 0, 0, 4) pt3dadd(-14, 15, 0, 4) }
radMed1 { pt3dclear() pt3dadd(-14, 15, 0, 3) pt3dadd(-29, 30, 0, 3) }
radDist1 { pt3dclear() pt3dadd(-29, 30, 0, 2) pt3dadd(-44, 45, 0, 2) }
lmM1 { pt3dclear() pt3dadd(-44, 45, 0, 1.5) pt3dadd(-59, 60, 0, 1.5) }
lmt1 { pt3dclear() pt3dadd(-59, 60, 0, 1) pt3dadd(-89, 90, 0, 1) }
radProx2 { pt3dclear() pt3dadd(15, 0, 0, 4) pt3dadd(45, 30, 0, 4) }
radMed2 { pt3dclear() pt3dadd(45, 30, 0, 3) pt3dadd(75, 60, 0, 3) }
radDist2 { pt3dclear() pt3dadd(75, 60, 0, 2) pt3dadd(90, 75, 0, 2) }
lmM2 { pt3dclear() pt3dadd(90, 75, 0, 1.5) pt3dadd(105, 90, 0, 1.5) }
lmt2 { pt3dclear() pt3dadd(105, 90, 0, 1) pt3dadd(120, 105, 0, 1) }
oriProx1 { pt3dclear() pt3dadd(0, 0, 0, 2) pt3dadd(-29, -29, 0, 2) }
oriMed1 { pt3dclear() pt3dadd(-29, -29, 0, 1.5) pt3dadd(-59, -59, 0, 1.5) }
oriDist1 { pt3dclear() pt3dadd(-59, -59, 0, 1) pt3dadd(-89, -89, 0, 1) }
oriProx2 { pt3dclear() pt3dadd(15, 0, 0, 2) pt3dadd(45, -29, 0, 2) }
oriMed2 { pt3dclear() pt3dadd(45, -29, 0, 1.5) pt3dadd(75, -59, 0, 1.5) }
oriDist2 { pt3dclear() pt3dadd(75, -59, 0, 1) pt3dadd(105, -89, 0, 1) }
}
objref all
proc subsets() { local i
objref all
all = new SectionList()
soma all.append()
radProx1 all.append()
radMed1 all.append()
radDist1 all.append()
lmM1 all.append()
lmt1 all.append()
radProx2 all.append()
radMed2 all.append()
radDist2 all.append()
lmM2 all.append()
lmt2 all.append()
oriProx1 all.append()
oriMed1 all.append()
oriDist1 all.append()
oriProx2 all.append()
oriMed2 all.append()
oriDist2 all.append()
}
proc geom() {
forsec all { }
soma { L = 20 diam = 10 }
radProx1 { L = 100 diam = 4 }
radMed1 { L = 100 diam = 3 }
radDist1 { L = 200 diam = 2 }
lmM1 { L = 100 diam = 1.5 }
lmt1 { L = 100 diam = 1 }
radProx2 { L = 100 diam = 4 }
radMed2 { L = 100 diam = 3 }
radDist2 { L = 200 diam = 2 }
lmM2 { L = 100 diam = 1.5 }
lmt2 { L = 100 diam = 1 }
oriProx1 { L = 100 diam = 2 }
oriMed1 { L = 100 diam = 1.5 }
oriDist1 { L = 100 diam = 1 }
oriProx2 { L = 100 diam = 2 }
oriMed2 { L = 100 diam = 1.5 }
oriDist2 { L = 100 diam = 1 }
}
external lambda_f
proc geom_nseg() {
forsec all { nseg = int((L/(0.1*lambda_f(100))+.9)/2)*2 + 1 }
}
proc biophys() {
gna = 0.15*0.9
gk = 0.013*1.5
gleak = 0.00013
c_m = 1.4
soma {
insert ichan2aa
gnatbar_ichan2aa = gna // Sodium conductance (original 0.015) 0.12 //original 0.030 to .055
gkfbar_ichan2aa = gk // Delayed K+ rectifier (fast) - original 0.015
gl_ichan2aa = gleak // Leak conductance
cm = c_m
}
radProx1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
radProx2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
oriProx1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
radMed1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
radMed2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
radDist1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
radDist2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
lmM1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
lmM2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
lmt1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
lmt2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
oriProx2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
oriMed1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
oriMed2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
oriDist1 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
oriDist2 {
insert ichan2aa
gnatbar_ichan2aa = gna
gkfbar_ichan2aa = gk
gl_ichan2aa = gleak
cm = c_m
}
forsec all {
insert ccanl
catau_ccanl = 10 // Time constant for decay of intracellular Ca2+
caiinf_ccanl = 5.e-6 // Steady-state intracellular Ca2+ concentration
cao_ccanl = 2
insert borgka
gkabar_borgka = 0.00015 // A-type K+ conductance
insert nca // N-type Ca2+ conductance
gncabar_nca = 0.0008 // check to modify- original 0.004
insert lca
glcabar_lca = 0.005 // L-type Ca2+ conductance
insert gskch
gskbar_gskch = 0.000002 // Ca2+-dependent K (SK) conductance
insert mykca
gkbar_mykca = 0.0002
Ra = 100
enat = 55
ekf = -90
eks = -90
ek = -90
enca = 130
elca = 130
el_ichan2aa = -64.4
}
}
obfunc connect2target() { localobj nc //$o1 target point process, optional $o2 returned NetCon
soma nc = new NetCon(&v(1), $o1)
nc.threshold = -10
if (numarg() == 2) { $o2 = nc } // for backward compatibility
return nc
}
objref syn_
proc synapses_EC() {
/* E0 */ lmM1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA EC
syn_.tau1 = 2.0
syn_.tau2 = 6.3
syn_.e = 0
/* E1 */ lmM2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA EC
syn_.tau1 = 2.0
syn_.tau2 = 6.3
syn_.e = 0
}
proc synapses_CA3() {
/* E2 */ radMed1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 2.0
syn_.tau2 = 6.3
syn_.e = 0
/* E3 */ radMed2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 2.0
syn_.tau2 = 6.3
syn_.e = 0
/* E4 */ radProx1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 2.0
syn_.tau2 = 6.3
syn_.e = 0
/* E5 */ radProx2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA CA3 Shaffer collateral
syn_.tau1 = 2.0
syn_.tau2 = 6.3
syn_.e = 0
}
proc synapses_PC() {
/* E6 */ oriProx1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA PC
syn_.tau1 = 0.3
syn_.tau2 = 0.6
syn_.e = 0
/* E7 */ oriProx2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // AMPA PC
syn_.tau1 = 0.3
syn_.tau2 = 0.6
syn_.e = 0
}
proc synapses_IN() {
/* I8 */ soma syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A Basket cell
syn_.tau1 = 0.29
syn_.tau2 = 2.67
syn_.e = -75
/* I9 */ radMed1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A Bistratified cell
syn_.tau1 = 0.29
syn_.tau2 = 2.67
syn_.e = -75
/* I10 */ radMed2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A Bistratified cell
syn_.tau1 = 0.29
syn_.tau2 = 2.67
syn_.e = -75
/* I11 */ lmM1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A OLM cell
syn_.tau1 = 0.73
syn_.tau2 = 10.0
syn_.e = -75
/* I12 */ lmM2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A OLM cell
syn_.tau1 = 0.73
syn_.tau2 = 10.0
syn_.e = -75
/* I13 */ soma syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A VIP/CCK cell
syn_.tau1 = 0.43
syn_.tau2 = 4.49
syn_.e = -75
}
proc synapses_SEP() {
/* I14 */ oriProx1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A Septum
syn_.tau1 = 1
syn_.tau2 = 8
syn_.e = -75
/* I15 */ oriProx2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-A Septum
syn_.tau1 = 1
syn_.tau2 = 8
syn_.e = -75
/* I16 */ oriProx1 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-B Septum
syn_.tau1 = 35
syn_.tau2 = 100
syn_.e = -75
/* I17 */ oriProx2 syn_ = new MyExp2Syn(0.5) pre_list.append(syn_) // GABA-B Septum
syn_.tau1 = 35
syn_.tau2 = 100
syn_.e = -75
}
proc synapses() {
synapses_EC()
synapses_CA3()
synapses_PC()
synapses_IN()
synapses_SEP()
}
func is_art() { return 0 }
endtemplate AACell