/* Created by Language version: 6.2.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__ican
#define _nrn_initial _nrn_initial__ican
#define nrn_cur _nrn_cur__ican
#define _nrn_current _nrn_current__ican
#define nrn_jacob _nrn_jacob__ican
#define nrn_state _nrn_state__ican
#define _net_receive _net_receive__ican
#define evaluate_fct evaluate_fct__ican
#define states states__ican
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gbar _p[0]
#define in _p[1]
#define m_inf _p[2]
#define tau_m _p[3]
#define m _p[4]
#define en _p[5]
#define cai _p[6]
#define Dm _p[7]
#define ina _p[8]
#define tadj _p[9]
#define v _p[10]
#define _g _p[11]
#define _ion_en *_ppvar[0]._pval
#define _ion_in *_ppvar[1]._pval
#define _ion_dindv *_ppvar[2]._pval
#define _ion_cai *_ppvar[3]._pval
#define _ion_ina *_ppvar[4]._pval
#define _ion_dinadv *_ppvar[5]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_evaluate_fct(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_ican", _hoc_setdata,
"evaluate_fct_ican", _hoc_evaluate_fct,
0, 0
};
/* declare global and static user variables */
#define beta beta_ican
double beta = 0.0003;
#define cac cac_ican
double cac = 0.0001;
#define taumin taumin_ican
double taumin = 0.1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"taumin_ican", "ms",
"gbar_ican", "mho/cm2",
"in_ican", "mA/cm2",
"tau_m_ican", "ms",
0,0
};
static double delta_t = 1;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"beta_ican", &beta_ican,
"cac_ican", &cac_ican,
"taumin_ican", &taumin_ican,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[6]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"6.2.0",
"ican",
"gbar_ican",
0,
"in_ican",
"m_inf_ican",
"tau_m_ican",
0,
"m_ican",
0,
0};
static Symbol* _n_sym;
static Symbol* _ca_sym;
static Symbol* _na_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
/*initialize range parameters*/
gbar = 0.00025;
_prop->param = _p;
_prop->param_size = 12;
_ppvar = nrn_prop_datum_alloc(_mechtype, 7, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_n_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* en */
_ppvar[1]._pval = &prop_ion->param[3]; /* in */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dindv */
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[3]._pval = &prop_ion->param[1]; /* cai */
prop_ion = need_memb(_na_sym);
_ppvar[4]._pval = &prop_ion->param[3]; /* ina */
_ppvar[5]._pval = &prop_ion->param[4]; /* _ion_dinadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _ican_reg() {
int _vectorized = 1;
_initlists();
ion_reg("n", 1.0);
ion_reg("ca", -10000.);
ion_reg("na", -10000.);
_n_sym = hoc_lookup("n_ion");
_ca_sym = hoc_lookup("ca_ion");
_na_sym = hoc_lookup("na_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
hoc_register_prop_size(_mechtype, 12, 7);
hoc_register_dparam_semantics(_mechtype, 0, "n_ion");
hoc_register_dparam_semantics(_mechtype, 1, "n_ion");
hoc_register_dparam_semantics(_mechtype, 2, "n_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "na_ion");
hoc_register_dparam_semantics(_mechtype, 5, "na_ion");
hoc_register_dparam_semantics(_mechtype, 6, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 ican /home/cluster/aleka/MainPath/Desktop/FSBC_model/Multicompartmental_Biophysical_models/mechanism/x86_64/ican.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Slow Ca-dependent cation current";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double, double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static double *_temp1;
static int _slist1[1], _dlist1[1];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
evaluate_fct ( _threadargscomma_ v , cai ) ;
Dm = ( m_inf - m ) / tau_m ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
evaluate_fct ( _threadargscomma_ v , cai ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset=0; int error = 0;
{
evaluate_fct ( _threadargscomma_ v , cai ) ;
Dm = ( m_inf - m ) / tau_m ;
}
return _reset;}
static int evaluate_fct ( _threadargsprotocomma_ double _lv , double _lcai ) {
double _lalpha2 ;
_lalpha2 = beta * pow( ( _lcai / cac ) , 2.0 ) ;
tau_m = 1.0 / ( _lalpha2 + beta ) / tadj ;
m_inf = _lalpha2 / ( _lalpha2 + beta ) ;
if ( tau_m < taumin ) {
tau_m = taumin ;
}
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
en = _ion_en;
cai = _ion_cai;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
en = _ion_en;
cai = _ion_cai;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_n_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_n_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_n_sym, _ppvar, 2, 4);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 1);
nrn_update_ion_pointer(_na_sym, _ppvar, 4, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 5, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
m = m0;
{
tadj = pow( 3.0 , ( ( celsius - 22.0 ) / 10.0 ) ) ;
evaluate_fct ( _threadargscomma_ v , cai ) ;
m = m_inf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
en = _ion_en;
cai = _ion_cai;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
in = gbar * m * m * ( v - en ) ;
ina = 0.7 * in ;
}
_current += in;
_current += ina;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
en = _ion_en;
cai = _ion_cai;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dina;
double _din;
_din = in;
_dina = ina;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dindv += (_din - in)/.001 ;
_ion_dinadv += (_dina - ina)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_in += in ;
_ion_ina += ina ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
double _dtsav = dt;
if (secondorder) { dt *= 0.5; }
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
en = _ion_en;
cai = _ion_cai;
{ euler_thread(1, _slist1, _dlist1, _p, states, _ppvar, _thread, _nt);
if (secondorder) {
int _i;
for (_i = 0; _i < 1; ++_i) {
_p[_slist1[_i]] += dt*_p[_dlist1[_i]];
}}
} }}
dt = _dtsav;
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif