TITLE K-A
: K-A current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002
: adapted for vn neurons M.Migliore 2005
NEURON {
SUFFIX kavn
USEION k READ ek WRITE ik
RANGE gbar
GLOBAL minf, mtau, hinf, htau
}
PARAMETER {
gbar = 0.00215 (mho/cm2)
celsius
ek (mV) : must be explicitly def. in hoc
v (mV)
a0m=0.0035
vhalfm=-75
zetam=0.2
gmm=0.82
vm=-21
km=12.8
a0h=0.002
vhalfh=-70
zetah=0.05
gmh=0.95
vh=0
kh=60
q10=3
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ik (mA/cm2)
minf mtau (ms)
hinf htau (ms)
}
STATE { m h}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*m^1.5*h*(v - ek)
}
INITIAL {
trates(v)
m=minf
h=hinf
}
DERIVATIVE states {
trates(v)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
}
PROCEDURE trates(v) {
LOCAL qt
qt=q10^((celsius-22)/10)
minf = 1/(1 + exp(-(v-vm)/km))
mtau = betm(v)/(qt*a0m*(1+alpm(v)))
hinf = 1/(1 + exp((v-vh)/kh))
htau = beth(v)/(qt*a0h*(1+alph(v)))
}
FUNCTION alpm(v(mV)) {
alpm = exp(zetam*(v-vhalfm))
}
FUNCTION betm(v(mV)) {
betm = exp(zetam*gmm*(v-vhalfm))
}
FUNCTION alph(v(mV)) {
alph = exp(zetah*(v-vhalfh))
}
FUNCTION beth(v(mV)) {
beth = exp(zetah*gmh*(v-vhalfh))
}