import matplotlib.pyplot as plt
from brian2 import *
from brian_models import *
start_scope()
time = 1000*ms
case = 1
C = 1*ms
tau_s = 10*ms
tau_u = 100*ms
v_th = -30
v_f0 = -40
I = 5.
if case == 1:
v_s0 = -41
v_u0 = -50
elif case == 2:
v_s0 = -39
v_u0 = -50
elif case == 3:
v_s0 = -38.5
v_u0 = -50
elif case == 4:
v_s0 = -39
v_u0 = -54.5
elif case == 5:
v_s0 = -38.5
v_u0 = -54.5
g_f = 1
g_s = 0.5
g_u = 0.015
v_sr = -35
dv_u = 3
G = NeuronGroup(1, MQIF_eqs, threshold = MQIF_threshold, reset = MQIF_reset, dt=0.05*ms, method='rk4')
G.v = -35
G.v_s = -35
G.v_u = -35
M = StateMonitor(G, ['v','v_s','v_u'], record=0)
spikemon = SpikeMonitor(G)
run(time)
t = M.t/ms
V = M[0].v
V = (V-min(V))/(max(V)-min(V))*100.
# Draw spikes
for ti in spikemon.t:
i = int(ti / G.dt)
V[i] = 100.
# Plot
plt.figure()
plt.plot(t, V)
plt.show()