clear all
close all
load('Conns_n150.mat')
%% if you want to calculate the conn. matrices yourself instead of using the pre-saved one
% depending on the specs of your machines, this can take very very long!
% If that is the case, try a smaller sheet (e.g. n=50). However the remote conn.
% parameters also have to be adapted.
tic;
n=150;
%calculate Connectivity Matrix for Py->Py
CeLoc=GaussianLocConnFunc(n,@distTorus,5);%r_loc=500 micrometre, hence the standard deviation of the gaussian is 250 micrometre, which corresponds to 5 units.
CeLoc(CeLoc>0)=1;
%calculate Connectivity Matrix for Py->In
CeLocI=GaussianLocConnFunc(n,@distTorus,5);%r_loc=500 micrometer
CeLocI(CeLocI>0)=1;
toc;
%remote conn
tic;
nOut=round(mean(sum(CeLoc,1))*4/6);%number of outgoing connections per mini column
%patchSize*numPatches should be > nOut!!!
remRad=75;%3750 micrometers
nM=10;
patchSize=round(5^2*3.14/2);
numPatches=6;
nOverlap=3;
CeRem=ConnPatchyRemOverlap(n,nM,patchSize,numPatches,remRad,nOut,nOverlap,@distTorus,@makeCellClusterToroidal);
toc;
%% parameters
n=150;
tstart=0;
tend=3;
parameters=getParam(n,CeRem,CeLoc,CeLocI);
nIt=(tend-tstart)/parameters.h+1;
parameters.NValue=getNoise(nIt,n);
tinterp=5;
T=tstart:parameters.h*tinterp:tend;
%% run runSheet
InitCond=double(rand(2*n^2,1)*0.1);
tic
Y=runSheet(InitCond,parameters);
toc
Py=Y(1:5:end,1:n^2);
plot(T,Py(:,1:100))