: Major modification: add NET_RECEIVE block to be controled by NetCon
TITLE Asymmetric trapping block model of NMDA receptors
COMMENT
------------------------------------------------------------------------
-----
Asymmetric trapping block model of NMDA receptors
===============================
See:
Vargas-Caballero M and Robinson HPC (2004). "Fast and slow voltage-dependent dynamics
of magnesium block in the NMDA receptor: the asymmetric trapping block model", J. Neurosci. 24:6171-6180.
10-state gating model:
Modified from Sobolevsky and Yelshansky, 2000.
Asymmetric rate constants for Mg bound and unbound states
D
|
C -- C1 -- C2 -- O Mg-free states
| ---------------------
CB -- C1B -- C2B -- OB Mg-bound states
|
DB
Voltage dependence of Mg2+ block and unblock reactions
from Ascher and Nowak 1988
This version applies to room temperature, 1 mM [Mg2+]_o
------------------------------------------------------------------------
-----
------------------------------------------------------------------------
-----
M. Vargas Caballero, H.P.C. Robinson and A. Roth, 2005
------------------------------------------------------------------------
-----
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS NMDA_TESTED
RANGE state_C0, state_C1, state_C2, state_D, state_O, state_B,
state_DB, state_C2B, state_C1B, state_CB
RANGE g, nchan, gamma, rb, mg_on, mg_off, C, conc, del, dur
GLOBAL Erev, mg, kon, koff, kd, kr, beta, alpha
GLOBAL beta_mg, alpha_mg, koff_mg, rb_mg, kon_mg, kr_mg, kd_mg
GLOBAL vmin, vmax
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(uS) = (microsiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = -3 (mV) : reversal potential
nchan = 10 : number of channels
gamma = 0.00005 (uS) : single channel conductance
mg = 1 (mM) : external magnesium concentration
vmin = -180 (mV)
vmax = 100 (mV)
normfactor = .06948171
: Rates
: Lester & Jahr
kon = 5e-3 (/uM /ms) : binding
koff = 82e-3 (/ms) : unbinding
beta = 46.5e-3 (/ms) : opening
alpha = 91.6e-3 (/ms) : closing
kr = 1.8e-3 (/ms) : resensitization
kd = 8.4e-3 (/ms) : desensitization
kon_mg = 5e-3 (/uM /ms) : binding + mg
koff_mg = 82e-3 (/ms) : unbinding + mg
beta_mg = 41.85e-3 (/ms) : opening + mg
alpha_mg = 229e-3 (/ms) : closing + mg
kr_mg = 1.8e-3 (/ms) : resensitization from the blocked state + mg
kd_mg = 8.4e-3 (/ms) : desensitization from the blocked state + mg
del = 100 (ms)
dur = 10 (ms)
conc = 0 (uM) : transmitter concentration
}
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (uS) : conductance
rb (/ms) : binding
rb_mg (/ms) : binding of glutamate to blocked channels
mg_on (/mM /ms) : blocking rate
mg_off (/ms) : unblocking rate
C (uM) : concentration calculated by the mod file
}
STATE {
: Channel states (all fractions)
state_C0 : unbound
state_C1 : single bound
state_C2 : double bound
state_D : desensitized
state_O : open
state_B : blocked
state_DB : desensitised closed
state_C2B : double bound closed
state_C1B : single bound closed
state_CB : unbound closed
}
INITIAL {
SOLVE kstates STEADYSTATE sparse
}
BREAKPOINT {
transmitter()
SOLVE kstates METHOD sparse
g = nchan * state_O * gamma : scale the single channel conductance
i = g * (v - Erev) : current in nA (mV*uS)
}
KINETIC kstates {
rates(v)
rb = kon * C
rb_mg = kon_mg * C
~ state_C0 <-> state_C1 (2*rb,koff)
~ state_C1 <-> state_C2 (rb,2*koff)
~ state_C2 <-> state_D (kd,kr)
~ state_C2 <-> state_O (beta,alpha)
~ state_O <-> state_B (mg_on,mg_off)
~ state_C2B <-> state_DB (kd_mg,kr_mg)
~ state_B <-> state_C2B (alpha_mg,beta_mg)
~ state_C2B <-> state_C1B (2*koff_mg,rb_mg)
~ state_C1B <-> state_CB (koff_mg,2*rb_mg)
CONSERVE
state_C0+state_C1+state_C2+state_D+state_O+state_B+state_DB+state_C2B+state_C1B+state_CB = 1
}
PROCEDURE rates(v(mV)) {
: from Ascher and Nowak - mg replaced with 1
mg_on = 610*exp(-v/17)*(1/1000)
mg_off = 5.4*exp(v/47)
}
: Use procedure only when working in non-stationary conditions,
: when in use, uncomment the call for this
: procedure at the breakpoint
: a brief square pulse may reproduce the synaptic activation
: of the receptor
:///////////////////////////////////////////////////////////////////////////////////////////////////////////////
: spike time is determined by NET_RECEIVE; in this case, w is the value assigned to GLUT concentration
:///////////////////////////////////////////////////////////////////////////////////////////////////////////////
NET_RECEIVE(w (uM)) {
: state_discontinuity(state_O, state_O + w/normfactor)
del=t
conc=w
}
PROCEDURE transmitter() {
if ((conc!=0)&&(t>=del)&&(t<=del+dur)) {
C=conc
} else {
C=0
conc=0
}
}