function [Ifish, Imut] = fig2_CD(N, c)
% fig2_CD Reproduce points from Figure 2C and 2D
%
% [Ifish, Imut] = fig2_CD(N, c) calculates the mutual information and I_Fisher for:
% population size N neurons
% correlation coefficient c
% Stuart Yarrow s.yarrow@ed.ac.uk - 15/11/2011
tic
stderr = 2e-2; % Target relative error for MC halting
maxiter = 4e5; % MC iteration limit
tau = 1.0; % integration time (s)
fTau = 10.0; % variability F/tau (spikes/s^2)
F = fTau .* tau; % Fano factor
alpha = 0.5; % variability exponent
fmax = 50.0; % peak firing rate (spikes/s)
fbg = 10.0; % background firing rate (spikes/s)
sigma = 30.0; % tuning curve width parameter (degrees)
% Preferred stimuli
nrns = [-180 : 360/N : 180-360/N];
% Define stimulus ensemble and population
stim = StimulusEnsemble('circular', 360, 360);
popNrns = CircGaussNeurons(nrns, sigma, fmax, fbg, tau, 'Gaussian-uniform', [F alpha c]);
% Compute measures
Ifish = popNrns.Ifisher(stim);
[Imut, ImutSEM, ImutSamps] = popNrns.mi('randMC', stim, stderr, maxiter);
fprintf('fig2_CD.m\n')
fprintf('Parameters: N = %g neurons, c = %g\n', N, fTau)
fprintf('I_Fisher = %g bits\n', Ifish)
fprintf('I_mut = %g bits with StdErr %g bits\n', Imut, ImutSEM)
fprintf('I_mut - I_Fisher = %g bits\n', Imut - Ifish)