classdef CircGaussNeurons < Neurons
properties
width = [];
maxRate = [];
backgroundRate = [];
end
methods
function obj = CircGaussNeurons(varargin)
% CIRCGAUSSNEURONS/CIRCGAUSSNEURONS Constructor for CircGaussNeurons object - population of neurons with circular Gaussian tuning curves
% obj = CircGaussNeurons(preferredStimuli, width, maxRate, backgroundRate, integrationTime, variabilityScheme, variabilityOpts)
%
% preferredStimuli - preferred stimulus value
% width - tuning curve width (this would be the variance if the curve was a probability distribution)
% maxRate - maximum firing rate (Hz)
% backgroundRate - background (spontaneous) firing rate (Hz)
% integrationTime - spike counting time per trial
% variabilityScheme - type of variability model
% variabilityOpts - vector of options
%
% preferredStimulus, width, maxFiringRate and backgroundFiringRate can be scalars or vectors of length popSize.
% CircGaussNeurons accepts only 1-D stimuli at present.
switch nargin
case 7
preferredStimuli = varargin{1};
widthIn = varargin{2};
maxRateIn = varargin{3};
backgroundRateIn = varargin{4};
integrationTime = varargin{5};
variabilityScheme = varargin{6};
variabilityOpts = varargin{7};
otherwise
error('Wrong number of inputs')
end
% Superclass constructor
obj = obj@Neurons(1, preferredStimuli, integrationTime, variabilityScheme, variabilityOpts);
if isscalar(widthIn) && isnumeric(widthIn)
obj.width = double(widthIn(ones(obj.popSize, 1)));
elseif length(widthIn) == obj.popSize && isvector(widthIn) && isnumeric(widthIn)
obj.width = reshape(double(widthIn), obj.popSize, 1);
else
error('Invalid width value or vector for population size %n', obj.popSize)
end
if isscalar(maxRateIn) && isnumeric(maxRateIn)
obj.maxRate = double(maxRateIn(ones(obj.popSize, 1)));
elseif length(maxRateIn) == obj.popSize && isvector(maxRateIn) && isnumeric(maxRateIn)
obj.maxRate = reshape(double(maxRateIn), obj.popSize, 1);
else
error('Invalid max firing rate value or vector for population size %n', obj.popSize)
end
if isscalar(backgroundRateIn) && isnumeric(backgroundRateIn)
obj.backgroundRate = double(backgroundRateIn(ones(obj.popSize, 1)));
elseif length(backgroundRateIn) == obj.popSize && isvector(backgroundRateIn) && isnumeric(backgroundRateIn)
obj.backgroundRate = reshape(double(backgroundRateIn), obj.popSize, 1);
else
error('Invalid background firing rate value or vector for population size %n', obj.popSize)
end
end
function r = meanR(obj, stim)
% CIRCGAUSSNEURONS/MEANR calculates mean responses to a set of stimuli
% r = meanR(obj, stimulusEnsemble)
%
% r = maxRate * exp(-((stimulus - preferredStimulus)^2 / (2 * width^2))) + backgroundRate
if isa(stim, 'StimulusEnsemble')
stims = repmat(stim.ensemble, [obj.popSize 1]);
maxRate = repmat(obj.maxRate, [1 stim.n]);
backgroundRate = repmat(obj.backgroundRate, [1 stim.n]);
centre = repmat(obj.preferredStimulus, [1 stim.n]);
width = repmat(obj.width, [1 stim.n]);
elseif isa(stim, 'double')
stims = repmat(stim(:)', [obj.popSize 1]);
maxRate = repmat(obj.maxRate, [1 length(stim)]);
backgroundRate = repmat(obj.backgroundRate, [1 length(stim)]);
centre = repmat(obj.preferredStimulus, [1 length(stim)]);
width = repmat(obj.width, [1 length(stim)]);
else
error('Invalid stimulus: stim may be a StimulusEnsemble object or vector of stimulus values only')
end
r = maxRate .* exp(-(1.0 ./ degToRad(width).^2) .* (1 - cosd(double(stims - centre)))) + backgroundRate;
end
function dr = dMeanR(obj, stim)
% CIRCGAUSSNEURONS/DMEANR calculates the derivative of the tuning curve
% dr dr = dMeanR(obj, stim)
if isa(stim, 'StimulusEnsemble')
stims = repmat(stim.ensemble, [obj.popSize 1]);
maxRate = repmat(obj.maxRate, [1 stim.n]);
centre = repmat(obj.preferredStimulus, [1 stim.n]);
width = repmat(obj.width, [1 stim.n]);
elseif isa(stim, 'double')
stims = repmat(stim, [obj.popSize 1]);
maxRate = repmat(obj.maxRate, [1 length(stim)]);
centre = repmat(obj.preferredStimulus, [1 length(stim)]);
width = repmat(obj.width, [1 length(stim)]);
else
error('Invalid stimulus: stim may be a StimulusEnsemble object or vector of stimulus values only')
end
beta = 1.0 ./ degToRad(width).^2;
dr = pi/180 .* (-maxRate .* exp(-beta) .* beta .* sind(double(stims - centre)) .* exp(beta .* cosd(double(stims - centre))));
end
function obj = gainadapt(obj, width, amnt, centre)
obj.maxRate = obj.maxRate .* (1 - amnt .* exp(-(1.0 ./ degToRad(width).^2) .* (1 - cosd(double(obj.preferredStimulus - centre)))));
end
function obj = widthadapt(obj, width, amnt, centre)
obj.width = obj.width .* (1 - amnt .* exp(-(1.0 ./ degToRad(width).^2) .* (1 - cosd(double(obj.preferredStimulus - centre)))));
end
function obj = remove(obj, nMarg)
% Call superclass method
[obj margMask] = remove@Neurons(obj, nMarg);
% Deal with subclass properties
if length(obj.width) > 1
obj.width = obj.width(margMask);
end
if length(obj.maxRate) > 1
obj.maxRate = obj.maxRate(margMask);
end
if length(obj.backgroundRate) > 1
obj.backgroundRate = obj.backgroundRate(margMask);
end
end
end
end