classdef CosNeurons < Neurons
properties
backgroundRate = [];
end
methods
function obj = CosNeurons(varargin)
% COSNEURONS/COSNEURONS Constructor for CosNeurons object - population of neurons with raised cosine tuning curves
% obj = CosNeurons(preferredStimuli, maxRate, backgroundRate, integrationTime, variabilityScheme, variabilityOpts)
%
% preferredStimuli - preferred stimulus value
% width - tuning curve width (this would be the variance if the curve was a probability distribution)
% maxRate - maximum firing rate (Hz)
% backgroundRate - background (spontaneous) firing rate (Hz)
% integrationTime - spike counting time per trial
% variabilityScheme - type of variability model
% variabilityOpts - vector of options
%
% preferredStimulus, maxFiringRate and backgroundFiringRate can be scalars or vectors of length popSize.
% CosNeurons accepts only 1-D stimuli at present.
switch nargin
case 5
preferredStimuli = varargin{1};
backgroundRateIn = varargin{2};
integrationTime = varargin{3};
variabilityScheme = varargin{4};
variabilityOpts = varargin{5};
otherwise
error('Wrong number of inputs')
end
% Superclass constructor
obj = obj@Neurons(1, preferredStimuli, integrationTime, variabilityScheme, variabilityOpts);
if isscalar(backgroundRateIn) && isnumeric(backgroundRateIn)
obj.backgroundRate = double(backgroundRateIn(ones(obj.popSize, 1)));
elseif length(backgroundRateIn) == obj.popSize && isvector(backgroundRateIn) && isnumeric(backgroundRateIn)
obj.backgroundRate = reshape(double(backgroundRateIn), obj.popSize, 1);
else
error('Invalid background firing rate value or vector for population size %n', obj.popSize)
end
end
function r = meanR(obj, stim)
% MEANR calculates mean responses to a set of stimuli
% r = meanR(obj, stimulusEnsemble)
%
% r = 1/0.86 .* max(0, cos(degToRad(stimulus - preferredStimulus)) - 0.14) + backgroundRate;
if ~isa(stim, 'StimulusEnsemble')
error([inputname(2) ' is not a valid StimulusEnsemble object'])
end
if stim.dimensionality ~= 1
error('CosNeurons only supports 1-D stimuli at present')
end
stims = repmat(stim.ensemble, obj.popSize, 1);
backgroundRate = repmat(obj.backgroundRate, 1, stim.n);
centre = repmat(obj.preferredStimulus, 1, stim.n);
r = 1/0.86 .* max(0, cos(degToRad(stims - centre)) - 0.14) + backgroundRate;
end
function dr = dMeanR(obj, stim)
% CIRCGAUSSNEURONS/DMEANR calculates the derivative of the tuning curve
% dr dr = dMeanR(obj, stim)
if ~isa(stim, 'StimulusEnsemble')
error([inputname(2) ' is not a valid StimulusEnsemble object'])
end
if stim.dimensionality ~= 1
error('CosNeurons only supports 1-D stimuli at present')
end
stims = repmat(stim.ensemble, obj.popSize, 1);
centre = repmat(obj.preferredStimulus, 1, stim.n);
dr = pi/180 .* (1.16279 .* sin(degToRad(centre - stims)) .* double((cos(degToRad(stims - centre)) - 0.14 > 0.0)));
end
function obj = remove(obj, nMarg)
% Call superclass method
[obj margMask] = remove@Neurons(obj, nMarg);
if length(obj.backgroundRate) > 1
obj.backgroundRate = obj.backgroundRate(margMask);
end
end
end
end